OBJECTIVE: To identify the optimal CD4 cell count at which cART should be initiated.
DESIGN: Prospective observational data from the HIV-CAUSAL Collaboration and dynamic marginal structural models were used to compare cART initiation strategies for CD4 thresholds between 0.200 and 0.500 × 10(9) cells/L.
SETTING: HIV clinics in Europe and the Veterans Health Administration system in the United States.
PATIENTS: 20, 971 HIV-infected, therapy-naive persons with baseline CD4 cell counts at or above 0.500 × 10(9) cells/L and no previous AIDS-defining illnesses, of whom 8392 had a CD4 cell count that decreased into the range of 0.200 to 0.499 × 10(9) cells/L and were included in the analysis.
MEASUREMENTS: Hazard ratios and survival proportions for all-cause mortality and a combined end point of AIDS-defining illness or death.
RESULTS: Compared with initiating cART at the CD4 cell count threshold of 0.500 × 10(9) cells/L, the mortality hazard ratio was 1.01 (95% CI, 0.84 to 1.22) for the 0.350 threshold and 1.20 (CI, 0.97 to 1.48) for the 0.200 threshold. The corresponding hazard ratios were 1.38 (CI, 1.23 to 1.56) and 1.90 (CI, 1.67 to 2.15), respectively, for the combined end point of AIDS-defining illness or death.
LIMITATIONS: CD4 cell count at cART initiation was not randomized. Residual confounding may exist.
CONCLUSION: Initiation of cART at a threshold CD4 count of 0.500 × 10(9) cells/L increases AIDS-free survival. However, mortality did not vary substantially with the use of CD4 thresholds between 0.300 and 0.500 × 10(9) cells/L.
Objective: To determine whether preoperative NT-proBNP has additional predictive value beyond a clinical risk score for the composite of vascular death and myocardial injury after noncardiac surgery (MINS) within 30 days after surgery.
Design: Prospective cohort study.
Setting: 16 hospitals in 9 countries.
Patients: 10 402 patients aged 45 years or older having inpatient noncardiac surgery.
Measurements: All patients had NT-proBNP levels measured before surgery and troponin T levels measured daily for up to 3 days after surgery.
Results: In multivariable analyses, compared with preoperative NT-proBNP values less than 100 pg/mL (the reference group), those of 100 to less than 200 pg/mL, 200 to less than 1500 pg/mL, and 1500 pg/mL or greater were associated with adjusted hazard ratios of 2.27 (95% CI, 1.90 to 2.70), 3.63 (CI, 3.13 to 4.21), and 5.82 (CI, 4.81 to 7.05) and corresponding incidences of the primary outcome of 12.3% (226 of 1843), 20.8% (542 of 2608), and 37.5% (223 of 595), respectively. Adding NT-proBNP thresholds to clinical stratification (that is, the Revised Cardiac Risk Index [RCRI]) resulted in a net absolute reclassification improvement of 258 per 1000 patients. Preoperative NT-proBNP values were also statistically significantly associated with 30-day all-cause mortality (less than 100 pg/mL [incidence, 0.3%], 100 to less than 200 pg/mL [incidence, 0.7%], 200 to less than 1500 pg/mL [incidence, 1.4%], and 1500 pg/mL or greater [incidence, 4.0%]).
Limitation: External validation of the identified NT-proBNP thresholds in other cohorts would reinforce our findings.
Conclusion: Preoperative NT-proBNP is strongly associated with vascular death and MINS within 30 days after noncardiac surgery and improves cardiac risk prediction in addition to the RCRI.
Primary Funding Source: Canadian Institutes of Health Research.
OBJECTIVE: To compare the effects of a hypotension-avoidance and a hypertension-avoidance strategy on major vascular complications after noncardiac surgery.
DESIGN: Partial factorial randomized trial of 2 perioperative blood pressure management strategies (reported here) and tranexamic acid versus placebo. (ClinicalTrials.gov: NCT03505723).
SETTING: 110 hospitals in 22 countries.
PATIENTS: 7490 patients having noncardiac surgery who were at risk for vascular complications and were receiving 1 or more long-term antihypertensive medications.
INTERVENTION: In the hypotension-avoidance strategy group, the intraoperative mean arterial pressure target was 80 mm Hg or greater; before and for 2 days after surgery, renin-angiotensin-aldosterone system inhibitors were withheld and the other long-term antihypertensive medications were administered only for systolic blood pressures 130 mm Hg or greater, following an algorithm. In the hypertension-avoidance strategy group, the intraoperative mean arterial pressure target was 60 mm Hg or greater; all antihypertensive medications were continued before and after surgery.
MEASUREMENTS: The primary outcome was a composite of vascular death and nonfatal myocardial injury after noncardiac surgery, stroke, and cardiac arrest at 30 days. Outcome adjudicators were masked to treatment assignment.
RESULTS: The primary outcome occurred in 520 of 3742 patients (13.9%) in the hypotension-avoidance group and in 524 of 3748 patients (14.0%) in the hypertension-avoidance group (hazard ratio, 0.99 [95% CI, 0.88 to 1.12]; P = 0.92). Results were consistent for patients who used 1 or more than 1 antihypertensive medication in the long term.
LIMITATION: Adherence to the assigned strategies was suboptimal; however, results were consistent across different adherence levels.
CONCLUSION: In patients having noncardiac surgery, our hypotension-avoidance and hypertension-avoidance strategies resulted in a similar incidence of major vascular complications.
PRIMARY FUNDING SOURCE: Canadian Institutes of Health Research, National Health and Medical Research Council (Australia), and Research Grant Council of Hong Kong.
METHODS: The KDIGO Work Group (WG) updated the guideline, which included reviewing and grading new evidence that was identified and summarized. As in the previous guideline, the WG used the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach to appraise evidence and rate the strength of recommendations and used expert judgment to develop recommendations. New evidence led to updating of recommendations in the chapters on treatment of hepatitis C virus (HCV) infection in patients with CKD (Chapter 2), management of HCV infection before and after kidney transplant (Chapter 4), and diagnosis and management of kidney disease associated with HCV infection (Chapter 5). Recommendations in chapters on detection and evaluation of hepatitis C in CKD (Chapter 1) and prevention of HCV transmission in hemodialysis units (Chapter 3) were not updated because of an absence of significant new evidence.
RECOMMENDATIONS: The 2022 updated guideline includes 43 graded recommendations and 20 ungraded recommendations, 7 of which are new or modified on the basis of the most recent evidence and consensus among the WG members. The updated guidelines recommend expanding treatment of hepatitis C with sofosbuvir-based regimens to patients with CKD glomerular filtration rate categories G4 and G5, including those receiving dialysis; expanding the donor pool for kidney transplant recipients by accepting HCV-positive kidneys regardless of the recipient's HCV status; and initiating direct-acting antiviral treatment of HCV-infected patients with clinical evidence of glomerulonephritis without requiring kidney biopsy. The update also addresses the use of immunosuppressive regimens in such patients.
OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC.
DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024).
SETTING: 83 enrolling sites.
PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection.
MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests.
RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero.
LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined.
CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC.
PRIMARY FUNDING SOURCE: National Institutes of Health.