A novel, simple reversed-phase high-performance liquid chromatographic (RP-HPLC) analytical method was developed and validated for the quantitative determination of asenapine from various nanoemulsion components during pre-formulation screening. The developed method was validated according to ICH Q2 (R1) guidelines. The developed and validated method was precisely and accurately quantified asenapine in various oils, surfactants and co-surfactants. The separation of asenapine was carried out on Hypersil BDS C18, 250×4.6mm, 5μm particle size column using methanol: acetonitrile (90:10) as mobile phase with a flow rate of 1mL.min-1. Measurement at 270nm for the concentration range of 5 to 50μg.mL-1 of the analyte was found to be linear with the determination coefficient (r2) of 0.999 as calculated by the least square regression method. The validated method was sensitive with LOD of 10.0ng.mL-1 and LOQ of 30.0ng.mL-1. Further, the method was precise and accurate, where the intraday and interday precision values were ranged from 0.70-0.95 and 0.36-0.95, respectively with the corresponding accuracy were ranged from 98.80-100.63 and 98.36-100.63. This developed and validated RP-HPLC method for asenapine was applied in the quantitative determination and screening of various oils, surfactants, and co-surfactants during the development of the asenapine maleate nanoemulsion.
Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremor, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves at the potential of drug delivery systems based on chitosan (CS) to treat PD.
The coagulation and immune system, both essential physiological systems in the human body, are intricately interconnected and play a critical role in determining the overall health of patients. These systems collaborate via various shared regulatory pathways, such as the Tissue Factor (TF) Pathway. Immunological cells that express TF and generate pro-inflammatory cytokines have the ability to affect coagulation. Conversely, coagulation factors and processes have a reciprocal effect on immunological responses by stimulating immune cells and regulating their functions. These interconnected pathways play a role in both preserving well-being and contributing to a range of pathological disorders. The close relationship between blood clotting and inflammation in the development of vascular disease has become a central focus of clinical study. This research specifically examines the crucial elements of this interaction within the contexts of cardiovascular disease and acute coronary syndrome. Tissue factor, the primary trigger of the extrinsic coagulation pathway, has a crucial function by inducing a proinflammatory reaction through the activation of coagulation factors. This, in turn, initiates coagulation and subsequent cellular signalling pathways. Protease-activated receptors establish the molecular connection between coagulation and inflammation by interacting with activated clotting factors II, X, and VII. Thrombosis, a condition characterised by the formation of blood clots, is the most dreaded consequence of cardiovascular disorders and a leading cause of death globally. Consequently, it poses a significant challenge to healthcare systems. Antithrombotic treatments efficiently target platelets and the coagulation cascade, but they come with the inherent danger of causing bleeding. Furthermore, antithrombotics are unable to fully eliminate thrombotic events, highlighting a treatment deficiency caused by a third mechanism that has not yet been sufficiently addressed, namely inflammation. Understanding these connections may aid in the development of novel approaches to mitigate the harmful mutual exacerbation of inflammation and coagulation. Gaining a comprehensive understanding of the intricate interaction among these systems is crucial for the management of diseases and the creation of efficacious remedies. Through the examination of these prevalent regulatory systems, we can discover novel therapeutic approaches that specifically target these complex illnesses. This paper provides a thorough examination of the reciprocal relationship between the coagulation and immune systems, emphasising its importance in maintaining health and understanding disease processes. This review examines the interplay between inflammation and thrombosis and its role in the development of thrombotic disorders.