Displaying all 6 publications

Abstract:
Sort:
  1. Westbury MV, Petersen B, Lorenzen ED
    PLoS One, 2019;14(9):e0222004.
    PMID: 31553763 DOI: 10.1371/journal.pone.0222004
    Fin whales (Balaenoptera physalus) and blue whales (B. musculus) are the two largest species on Earth and are widely distributed across the world's oceans. Hybrids between these species appear to be relatively widespread and have been reported in both the North Atlantic and North Pacific; they are also relatively common, and have been proposed to occur once in every thousand fin whales. However, despite known hybridization, fin and blue whales are not sibling species. Rather, the closest living relative of fin whales are humpback whales (Megaptera novaeangliae). To improve the quality of fin whale data available for analysis, we assembled and annotated a fin whale nuclear genome using in-silico mate pair libraries and previously published short-read data. Using this assembly and genomic data from a humpback, blue, and bowhead whale, we investigated whether signatures of introgression between the fin and blue whale could be found. We find no signatures of contemporary admixture in the fin and blue whale genomes, although our analyses support ancestral gene flow between the species until 2.4-1.3 Ma. We propose the following explanations for our findings; i) fin/blue whale hybridization does not occur in the populations our samples originate from, ii) contemporary hybrids are a recent phenomenon and the genetic consequences have yet to become widespread across populations, or iii) fin/blue whale hybrids are under large negative selection, preventing them from backcrossing and contributing to the parental gene pools.
  2. Westbury MV, Petersen B, Garde E, Heide-Jørgensen MP, Lorenzen ED
    iScience, 2019 Apr 08.
    PMID: 31054839 DOI: 10.1016/j.isci.2019.03.023
    The narwhal (Monodon monoceros) is a highly specialized endemic Arctic cetacean, restricted to the Arctic seas bordering the North Atlantic. Low levels of genetic diversity have been observed across several narwhal populations using mitochondrial DNA and microsatellites. Despite this, the global abundance of narwhals was recently estimated at ∼170,000 individuals. However, the species is still considered vulnerable to changing climates due to its high specialization and restricted Arctic distribution. We assembled and annotated a genome from a narwhal from West Greenland. We find relatively low diversity at the genomic scale and show that this did not arise by recent inbreeding, but rather has been stable over an extended evolutionary timescale. We also find that the current large global abundance most likely reflects a recent rapid expansion from a much smaller founding population.
  3. Westbury MV, Barnett R, Sandoval-Velasco M, Gower G, Vieira FG, de Manuel M, et al.
    Open Res Eur, 2021 Jun 21;1:25.
    PMID: 35098251 DOI: 10.12688/openreseurope.13104.2
    Background: The evolutionary relationships of Felidae during their Early-Middle Miocene radiation is contentious. Although the early common ancestors have been subsumed under the grade-group Pseudaelurus, this group is thought to be paraphyletic, including the early ancestors of both modern cats and extinct sabretooths.

    Methods: Here, we sequenced a draft nuclear genome of Smilodon populator, dated to 13,182 ± 90 cal BP, making this the oldest palaeogenome from South America to date, a region known to be problematic for ancient DNA preservation. We analysed this genome, together with genomes from other extinct and extant cats to investigate their phylogenetic relationships.

    Results: We confirm a deep divergence (~20.65 Ma) within sabretoothed cats. Through the analysis of both simulated and empirical data, we show a lack of gene flow between Smilodon and contemporary Felidae.

    Conclusions: Given that some species traditionally assigned to Pseudaelurus originated in the Early Miocene ~20 Ma, this indicates that some species of Pseudaelurus may be younger than the lineages they purportedly gave rise to, further supporting the hypothesis that Pseudaelurus was paraphyletic.

  4. Sánchez-Barreiro F, Gopalakrishnan S, Ramos-Madrigal J, Westbury MV, de Manuel M, Margaryan A, et al.
    Mol Ecol, 2021 12;30(23):6355-6369.
    PMID: 34176179 DOI: 10.1111/mec.16043
    Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.
  5. Sánchez-Barreiro F, De Cahsan B, Westbury MV, Sun X, Margaryan A, Fontsere C, et al.
    Mol Biol Evol, 2023 Sep 01;40(9).
    PMID: 37561011 DOI: 10.1093/molbev/msad180
    The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.
  6. Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, et al.
    Curr Biol, 2020 Dec 21;30(24):5018-5025.e5.
    PMID: 33065008 DOI: 10.1016/j.cub.2020.09.051
    Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links