Vatica mangachapoi is a tree up to 20 m tall with white resinous. It is distributed in China (Hainan province), Indonesia, Malaysia (N Borneo), Philippines, Thailand, and Vietnam. It grows in forests on hills and mountain slopes below 700 metres. Its durable wood is used for making boats and building bridges and houses. It has been ranked as a VU (Vulnerable) species in China. Here we report and characterize the complete plastid genome sequence of V. mangachapoi in an effort to provide genomic resources useful for promoting its conservation and phylogenetic research. The complete plastome is 151,538 bp in length and contains the typical structure and gene content of angiosperm plastome, including two Inverted Repeat (IR) regions of 23,921 bp, a Large Single-Copy (LSC) region of 83,587 bp and a Small Single-Copy (SSC) region of 20,109 bp. The plastome contains 114 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA gene, and 4 unique rRNA genes. The overall A/T content in the plastome of V. mangachapoi is 62.80%. The phylogenetic analysis indicated that V. mangachapoi and V. odorata is closely related and as an independent branch in Malvales in our study. The complete plastome sequence of V. mangachapoi will provide a useful resource for the conservation genetics of this species and for the phylogenetic studies for Vatica.
Objective: To confirm the laboratory diagnosis of dengue bordline cases reported in Henan Province and trace its origin from molecular level in 2017. Methods: The study samples were blood samples (3-5 ml), which came from 8 suspected cases of dengue fever reported in the 2017 direct reporting system of Henan provincial infectious disease monitoring network. Meanwhile, case investigation was conducted according to National dengue fever surveillance programme. Serum were separated from blood samples and tested for Dengue NS1 antigen, IgM & IgG antibodies, and dengue RNA. According to dengue diagnosis criteria, confirmed cases were identified by testing results. Samples carried dengue RNA performed for real-time PCR genotyping and amplification of E gene. Then, the amplicons were sequenced and homological and phylogenetic analyses were constructed. Results: 8 serum samples of suspected dengue cases were collected in Henan Province, 2017. Six of them were diagnosed as dengue confirmed cases. All the dengue confirmed cases belonged to outside imported cases, 5 of them were positive by dengue RNA testing. Genotyping results showed there were 1 DENV1 case, 2 DENV2 cases and 2 DENV3 cases. A DENV2 case and a DENV3 case of this study were traced its origin successfully. The sequence of Pakistan imported DENV2 case belongs to cosmopolitan genotype, which was the most consistent with Pakistan's DENV2 KJ010186 in 2013 (identity 99.0%). The sequence of Malaysia imported DENV3 case belongs to genotype I, which was the most consistent with Singapore's DENV3 KX224276 in 2014(identity 99.0%). Conclusion: The laboratory diagnosis and molecular traceability of dengue cases in Henan Province in 2017 confirmed that all cases were imported and did not cause local epidemics.
Lannea coromandelica (Houtt.) Merr. is a deciduous tree in the family Anacardiaceae, which grows in lowland and hill forests; 100-1800 m. SW Guangdong, S Guangxi, S Yunnan [Bhutan, India, Myanmar, Nepal, Sri Lanka; cultivated elsewhere in continental SE Asia, such as in Cambodia, Laos, Malaysia, Thailand, Vietnam, where it is probably naturalized]. The length of the complete plastome is 162,460 bp, including 130 genes consisting of 85 protein-coding genes, 37 tRNA genes and 8 rRNA genes. The assembled plastome has the typical structure and gene content of angiosperms plastome, which includes two inverted repeats (IRs) regions of 26,877 bp, a large single copy (LSC) region of 89,599 bp and a small single-copy (SSC) region of 19,107 bp. The total G/C content in the plastome of L. coromandelica is 37.7%. The complete plastome sequence of L. coromandelica will provide contributions to the conservation genetics of this species as well as to phylogenetic studies in Anacardiaceae.
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.