Hepatic involvement is a common feature in childhood mitochondrial hepatopathies, particularly in the neonatal period. Respiratory chain disorders may present as neonatal acute liver failure, hepatic steatohepatitis, cholestasis, or cirrhosis with chronic liver failure of insidious onset. In recent years, specific molecular defects (mutations in nuclear genes such as SCO1, BCS1L, POLG, DGUOK, and MPV17 and the deletion or rearrangement of mitochondrial DNA) have been identified, with the promise of genetic and prenatal diagnosis. The current treatment of mitochondrial hepatopathies is largely ineffective, and the prognosis is generally poor. The role of liver transplantation in patients with liver failure remains poorly defined because of the systemic nature of the disease, which does not respond to transplantation. Prospective, longitudinal, multicentered studies will be needed to address the gaps in our knowledge in these rare liver diseases.
Liver involvement, a common feature in childhood mitochondrial hepatopathies, particularly in the neonatal period, may manifest as neonatal acute liver failure, hepatic steatohepatitis, cholestasis, or cirrhosis with chronic liver failure of insidious onset. There are usually significant neuromuscular symptoms, multisystem involvement, and lactic acidemia. The liver disease is usually progressive and eventually fatal. Current medical therapy of mitochondrial hepatopathies is largely ineffective, and the prognosis is usually poor. The role of liver transplantation in patients with liver failure remains poorly defined because of the systemic nature of the disease that does not respond to transplantation. Several specific molecular defects (mutations in nuclear genes such as SCO1, BCS1L, POLG, DGUOK, and MPV17 and deletion or rearrangement of mitochondrial DNA) have been identified in recent years. Prospective, longitudinal multicenter studies will be needed to address the gaps in our knowledge in these rare liver diseases.
Premature infants and children with intestinal failure (IF) or short bowel syndrome are susceptible to intestinal failure-associated liver disease (IFALD, previously referred to as parenteral nutrition-associated liver disease, or PNALD). IFALD in children is characterized by progressive cholestasis and biliary fibrosis, and steatohepatitis in adults, and is seen in individuals dependent upon prolonged administration of PN. Many factors have been proposed as contributing to the pathogenesis of IFALD. In recent years, the focus has been on the potential synergistic roles of the intestinal microbiome, increased intestinal permeability, activation of hepatic innate immune pathways, and the use of intravenous soybean-oil-based intravenous lipid emulsions (SO-ILE). In vitro and in vivo studies have identified stigmasterol, a component of the plant sterols present in SO-ILE, as playing an important role. Although various strategies have been adopted to prevent or reverse IFALD, most suffer from a lack of strong evidence supported by well-designed, prospective clinical trials with clearly defined endpoints. Reduction in the amount of SO-ILEs or replacement with non-SO-ILEs has been shown to reverse IFALD although safety and long-term effectiveness have not been studied. Medical and surgical modalities to increase intestinal adaptation, advance enteral feedings, and prevent central line bloodstream infections are also important preventative strategies. There is a continued need to conduct high-quality, prospective trials with clearly define outcome measures to ascertain the potential benefits of these strategies.