Displaying all 3 publications

Abstract:
Sort:
  1. Wong KK, Gascoyne DM, Brown PJ, Soilleux EJ, Snell C, Chen H, et al.
    Leukemia, 2014 Feb;28(2):362-72.
    PMID: 23884370 DOI: 10.1038/leu.2013.224
    We previously identified autoantibodies to the endocytic-associated protein Huntingtin-interacting protein 1-related (HIP1R) in diffuse large B-cell lymphoma (DLBCL) patients. HIP1R regulates internalization of cell surface receptors via endocytosis, a process relevant to many therapeutic strategies including CD20 targeting with rituximab. In this study, we characterized HIP1R expression patterns, investigated a mechanism of transcriptional regulation and its clinical relevance in DLBCL patients treated with immunochemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone, R-CHOP). HIP1R was preferentially expressed in germinal center B-cell-like DLBCL (P<0.0001) and inversely correlated with the activated B-cell-like DLBCL (ABC-DLBCL) associated transcription factor, Forkhead box P1 (FOXP1). HIP1R was confirmed as a direct FOXP1 target gene in ABC-DLBCL by FOXP1-targeted silencing and chromatin immunoprecipitation. Lower HIP1R protein expression (≤ 10% tumoral positivity) significantly correlated with inferior overall survival (OS, P=0.0003) and progression-free survival (PFS, P=0.0148) in R-CHOP-treated DLBCL patients (n=157). Reciprocal expression with ≥ 70% FOXP1 positivity defined FOXP1(hi)/HIP1R(lo) patients with particularly poor outcome (OS, P=0.0001; PFS, P=0.0016). In an independent R-CHOP-treated DLBCL (n=233) microarray data set, patients with transcript expression in lower quartile HIP1R and FOXP1(hi)/HIP1R(lo) subgroups exhibited worse OS, P=0.0044 and P=0.0004, respectively. HIP1R repression by FOXP1 is strongly associated with poor outcome, thus further understanding of FOXP1-HIP1R and/or endocytic signaling pathways might give rise to novel therapeutic options for DLBCL.
  2. Soares PA, Trejaut JA, Rito T, Cavadas B, Hill C, Eng KK, et al.
    Hum Genet, 2016 Mar;135(3):309-26.
    PMID: 26781090 DOI: 10.1007/s00439-015-1620-z
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The "out-of-Taiwan" model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links