Displaying all 7 publications

Abstract:
Sort:
  1. Ten Bosch QA, Singh BK, Hassan MR, Chadee DD, Michael E
    PLoS Negl Trop Dis, 2016 05;10(5):e0004680.
    PMID: 27159023 DOI: 10.1371/journal.pntd.0004680
    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control.
  2. Sabatino A, Regolisti G, Karupaiah T, Sahathevan S, Sadu Singh BK, Khor BH, et al.
    Clin Nutr, 2017 06;36(3):663-671.
    PMID: 27371993 DOI: 10.1016/j.clnu.2016.06.007
    BACKGROUND & AIMS: Protein-Energy Wasting (PEW) is the depletion of protein/energy stores observed in the most advanced stages of Chronic Kidney Disease (CKD). PEW is highly prevalent among patients on chronic dialysis, and is associated with adverse clinical outcomes, high morbidity/mortality rates and increased healthcare costs. This narrative review was aimed at exploring the pathophysiology of PEW in end-stage renal disease (ESRD) on hemodialysis. The main aspects of nutritional status evaluation, intervention and monitoring in this clinical setting were described, as well as the current approaches for the prevention and treatment of ESRD-related PEW.

    METHODS: An exhaustive literature search was performed, in order to identify the relevant studies describing the epidemiology, pathogenesis, nutritional intervention and outcome of PEW in ESRD on hemodialysis.

    RESULTS AND CONCLUSION: The pathogenesis of PEW is multifactorial. Loss of appetite, reduced intake of nutrients and altered lean body mass anabolism/catabolism play a key role. Nutritional approach to PEW should be based on a careful and periodic assessment of nutritional status and on timely dietary counseling. When protein and energy intakes are reduced, nutritional supplementation by means of specific oral formulations administered during the hemodialysis session may be the first-step intervention, and represents a valid nutritional approach to PEW prevention and treatment since it is easy, effective and safe. Omega-3 fatty acids and fibers, now included in commercially available preparations for renal patients, could lend relevant added value to macronutrient supplementation. When oral supplementation fails, intradialytic parenteral nutrition can be implemented in selected patients.

  3. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al.
    Cell Death Dis, 2016 12 08;7(12):e2513.
    PMID: 27929536 DOI: 10.1038/cddis.2016.374
    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy.
  4. Sadu Singh BK, Narayanan SS, Khor BH, Sahathevan S, Abdul Gafor AH, Fiaccadori E, et al.
    Front Pharmacol, 2020;11:506.
    PMID: 32410990 DOI: 10.3389/fphar.2020.00506
    Lipid emulsions (LEs), an integral component in parenteral nutrition (PN) feeding, have shifted from the primary aim of delivering non-protein calories and essential fatty acids to defined therapeutic outcomes such as reducing inflammation, and improving metabolic and clinical outcomes. Use of LEs in PN for surgical and critically ill patients is particularly well established, and there is enough literature assigning therapeutic and adverse effects to specific LEs. This narrative review contrarily puts into perspective the fatty acid compositional (FAC) nature of LE formulations, and discusses clinical applications and outcomes according to the biological function and structural functionality of fatty acids and co-factors such as phytosterols, α-tocopherol, emulsifiers and vitamin K. In addition to soybean oil-based LEs, this review covers clinical studies using the alternate LEs that incorporates physical mixtures combining medium- and long-chain triglycerides or structured triglycerides or the unusual olive oil or fish oil. The Jaded score was applied to assess the quality of these studies, and we report outcomes categorized as per immuno-inflammatory, nutritional, clinical, and cellular level FAC changes. It appears that the FAC nature of LEs is the primary determinant of desired clinical outcomes, and we conclude that one type of LE alone cannot be uniformly applied to patient care.
  5. Sahathevan S, Karupaiah T, Khor BH, Sadu Singh BK, Mat Daud ZA, Fiaccadori E, et al.
    Front Nutr, 2021;8:743324.
    PMID: 34977109 DOI: 10.3389/fnut.2021.743324
    Background: Muscle wasting, observed in patients with end-stage kidney disease and protein energy wasting (PEW), is associated with increased mortality for those on hemodialysis (HD). Oral nutritional supplementation (ONS) and nutrition counseling (NC) are treatment options for PEW but research targeting muscle status, as an outcome metric, is limited. Aim: We compared the effects of combined treatment (ONS + NC) vs. NC alone on muscle status and nutritional parameters in HD patients with PEW. Methods: This multi-center randomized, open label-controlled trial, registered under ClinicalTrials.gov (Identifier no. NCT04789031), recruited 56 HD patients identified with PEW using the International Society of Renal Nutrition and Metabolism criteria. Patients were randomly allocated to intervention (ONS + NC, n = 29) and control (NC, n = 27) groups. The ONS + NC received commercial renal-specific ONS providing 475 kcal and 21.7 g of protein daily for 6 months. Both groups also received standard NC during the study period. Differences in quadriceps muscle status assessed using ultrasound (US) imaging, arm muscle area and circumference, bio-impedance spectroscopy (BIS), and handgrip strength (HGS) methods were analyzed using the generalized linear model for repeated measures. Results: Muscle indices as per US metrics indicated significance (p < 0.001) for group × time interaction only in the ONS + NC group, with increases by 8.3 and 7.7% for quadriceps muscle thickness and 4.5% for cross-sectional area (all p < 0.05). This effect was not observed for arm muscle area and circumference, BIS metrics and HGS in both the groups. ONS + NC compared to NC demonstrated increased dry weight (p = 0.039), mid-thigh girth (p = 0.004), serum prealbumin (p = 0.005), normalized protein catabolic rate (p = 0.025), and dietary intakes (p < 0.001), along with lower malnutrition-inflammation score (MIS) (p = 0.041). At the end of the study, lesser patients in the ONS + NC group were diagnosed with PEW (24.1%, p = 0.008) as they had achieved dietary adequacy with ONS provision. Conclusion: Combination of ONS with NC was effective in treating PEW and contributed to a gain in the muscle status as assessed by the US, suggesting that the treatment for PEW requires nutritional optimization via ONS.
  6. Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, et al.
    Autophagy, 2022 Sep;18(9):2150-2160.
    PMID: 35012409 DOI: 10.1080/15548627.2021.2021494
    Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links