OBJECTIVE: The objective of this study was to develop an ultrasound-assisted extraction (UAE) method for achieving a high extraction yield of anthraquinones using the response surface methodology (RSM), Box-Behnken design (BBD), and a recycling preparative high-performance liquid chromatography (HPLC) protocol for isolation of anthraquinones from C. singueana.
METHODOLOGY: Optimisation of UAE was performed using the Box-Behnken experimental design. Recycling preparative HPLC was employed to isolate anthraquinones from the root extract of C. singueana.
RESULTS: The BBD was well-described by a quadratic polynomial model (R2 = 0.9751). The predicted optimal UAE conditions for a high extraction yield were obtained at: extraction time 25.00 min, temperature 50°C and solvent-sample ratio of 10 mL/g. Under the predicted conditions, the experimental value (1.65 ± 0.07%) closely agreed to the predicted yield (1.64%). The obtained crude extract of C. singueana root was subsequently purified to afford eight anthraquinones.
CONCLUSION: The extraction protocol described here is suitable for large-scale extraction of anthraquinones from plant extracts.
METHOD: Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR.
RESULTS: Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM.
CONCLUSION: Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.
OBJECTIVE: To assess the ability of liquorice root samples to induce Nrf2 activation correlating to their potential chemopreventive property.
METHODS: The ability of nine methanolic extracts of liquorice root samples, collected from various geographical origins, to induce Nrf2 activation was determined by the luciferase reporter assay using the ARE-reporter cell line, AREc32. The antioxidant properties were determined by the 2,2-diphenyl-1-picryhydrazyl (DPPH) and the ferric-reducing antioxidant power (FRAP) assays.
RESULTS: All extracts exhibited free-radical-scavenging property (RC50 = 136.39-635.66 µg/mL). The reducing capacity of ferrous ion was 214.46-465.59 μM Fe(II)/g. Nrf2 activation indicated that all extracts induced expression of ARE-driven luciferase activity with a maximum induction of 2.3 fold relative to control. These activities varied for samples from one geographical location to another.
CONCLUSIONS: The present findings add to the existing knowledge of cancer chemoprevention by plant-derived extracts or purified phytochemicals, particularly the potential use of liquorice for this purpose. Copyright © 2016 John Wiley & Sons, Ltd.
OBJECTIVE: The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AChE inhibition linking to the potential treatment of Alzheimer's disease.
METHODOLOGY: Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and quantitative structure-activity relationship (QSAR) were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman's method.
RESULTS: In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AChE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative compound 20 was the best scorer, i.e. -31.6392 and IC50 was predicted as 6.025 nM.
CONCLUSION: Results indicated that flavonoids could be efficient inhibitors of AChE and thus, could be useful in the management of Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.