Vinegar is very popular as traditional ingredient for cooking, pickling, and preservation. It is made from sugar or starch by an alcoholic and acetous fermentation and produces ethanol as a by-product. Alcohol is prohibited to be consumed for Muslim or used as ingredient if it is exceeding the allowable limit as stated by Islamic Council in Malaysia. According to Fatwa Committee National Council of Islamic Religious Affairs Malaysia, natural occurrences of ethanol in food products are acceptable if the ethanol contents are less than 1% in beverages and 0.5% for flavoring or coloring substances for the purpose of stabilization. On the other hand, for specific vinegar product, as stated by Malaysian Food Act and Regulation, acetic acid content must be at least 4%. According to FAO/WHO, a product is to be labelled as vinegar if the acetic acid content is 6% and with a maximum residual alcohol content of 0.5%v/v for wine vinegar and 1%v/v for other vinegars. This study investigated the physiochemical properties of the vinegar from different sources of raw materials. Total solubility (TA) by using Brix method, pH, and alcohol and acetic acid content by GC-TOF/MS of 12 commercial vinegars from Malaysia and abroad were studied. The result shown that for pH value of commercial vinegar are ranged from 2.51-3.14°Brix from 2.10-40.73°Brix, acetic acid is ranged from 0.0253-0.1276% and ethanol content from 0-0.5911%. Thus, this study will come out with the clear observation on ethanol content in fermented product which is vinegar in order to categories the halalness of the product that available in Malaysia market especially the ones that are produced internationally. Lastly, as shown by the profiling study, vinegar that are imported internationally may contain some amount of alcohol in contrast with the one that locally produced in Malaysia and has Halal certification.
Heavy metals with high chemical activity from sludge and waste release, agriculture, and
mining activity are a major concern. They should be carefully managed before reaching the
main water bodies. Excessive exposure to heavy metal may cause toxic effect to any types of
organism from the biomolecular to the physiological level, and ultimately cause death. Monitoring is the best technique to ensure the safety of our environment before a rehabilitation is
needed. Nowadays, enzyme-based biosensors are utilised in biomonitoring programmes as
this technique allows for a real-time detection and rapid result. It is also inexpensive and easy
to handle. Enzyme-based biosensors are an alternative for the preliminary screening of
contamination before a secondary screening is performed using high-performance technology.
This review highlights the current knowledge on enzyme-based biosensors, focusing on
cholinesterase for toxic metal detection in the environment.
This was a prospective cohort study, carried out in the Neuro Intensive Care Unit, Department of Neurosciences, Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan. The study was approved by the local ethics committee and was conducted between November 2005 and September 2007 with a total of 30 patients included in the study. In our study, univariate analysis showed a statistically significant relationship between mean intracranial pressure (ICP) as well as cerebral perfusion pressure (CPP) with both states of basal cistern and the degree of diffuse injury and oedema based on the Marshall classification system. The ICP was higher while CPP and compliance were lower whenever the basal cisterns were effaced in cases of cerebral oedema with Marshall III and IV. In comparison, the study revealed lower ICP, higher mean CPP and better mean cerebral compliance if the basal cisterns were opened or the post operative CT brain scan showed Marshall I and II. These findings suggested the surgical evacuation of clots to reduce the mass volume and restoration of brain anatomy may reduce vascular engorgement and cerebral oedema, therefore preventing intracranial hypertension, and improving cerebral perfusion pressure and cerebral compliance. Nevertheless the study did not find any significant relationship between midline shifts and mean ICP, CPP or cerebral compliance even though lower ICP, higher CPP and compliance were frequently observed when the midline shift was less than 0.5 cm. As the majority of our patients had multiple and diffuse brain injuries, the absence of midline shift did not necessarily mean lower ICP as the pathology was bilateral and even when after excluding the multiple lesions, the result remained insignificant. We assumed that the CT brain scan obtained after evacuation of the mass lesion to assess the state basal cistern and classify the diffuse oedema may prognosticate the intracranial pressure and cerebral perfusion pressure thus assisting in the acute post operative management of severely head injured patients. Hence post operative CT brain scans may be done to verify the ICP and CPP readings postoperatively. Subsequently, withdrawal of sedation for neurological assessment after surgery could be done if the CT brain scan showed an opened basal cistern and Marshall I and II coupled with ICP of less than 20 mmHg.
The influence of variable reaction time (tr) on surface/textural properties (surface area, total pore volume, and pore diameter) of carbon-encapsulated magnetite (Fe3O4@C) nanocomposites fabricated by a hydrothermal process at 190 °C for 3, 4, and 5 h was studied. The properties were calculated using the Brunauer-Emmett-Teller (BET) isotherms data. The nanocomposites were characterised using Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetry, and scanning and transmission electron microscopies. Analysis of variance shows tr has the largest effect on pore volume (F value = 1117.6, p value < 0.0001), followed by the surface area (F value = 54.8, p value < 0.0001) and pore diameter (F value = 10.4, p value < 0.001) with R2-adjusted values of 99.5%, 88.5% and 63.1%, respectively. Tukey and Fisher tests confirmed tr rise to have caused increased variations in mean particle sizes (11-91 nm), crystallite sizes (5-21 nm), pore diameters (9-16 nm), pore volume (0.017-0.089 cm3 g-1) and surface area (7.6-22.4 m2 g-1) of the nanocomposites with individual and simultaneous confidence limits of 97.9 and 84.4 (p-adj < 0.05). The nanocomposites' retained Fe-O vibrations at octahedral (436 cm-1) and tetrahedral (570 cm-1) cubic ferrite sites, modest thermal stability (37-60 % weight loss), and large volume-specific surface area with potential for catalytic application in advanced oxidation processes.
BACKGROUND: During 1990-1992, 282 Chinese residents of Selangor and the Federal Territory, Malaysia with histologically confirmed nasopharyngeal carcinoma (NPC) were interviewed about occupational history, diet, alcohol consumption, and tobacco use, as were an equal number of Malaysian Chinese population controls, pair-matched to cases by age and sex.
METHODS: Exposures to 20 kinds of workplace substances, solar and industrial heat, and cigarette smoke, were analysed by univariate and multivariate methods.
RESULTS: Nasopharyngeal carcinoma was associated with occupational exposures to construction, metal and wood dusts; motor fuel and oil; paints and varnishes; certain other chemicals; industrial heat; solar heat from outdoor occupations; certain smokes; cigarette smoking; and childhood exposure to parental smoking. After adjustment for risk from diet and cigarette smoke, only wood dust (OR = 2.36; 95% CI : 1.33- 4.19), and industrial heat (OR = 2.21; 95% CI : 1.12-4.33) remained clearly associated. Wood dust remained statistically significant after further adjustment for social class. No significant crude or adjusted association was found between NPC and formaldehyde (adjusted OR = 0.71; 95% CI : 0.34-1.43).
CONCLUSIONS: This study supports previous findings that some occupational inhalants are risk factors for NPC. The statistical effect of wood dust remained substantial after adjustment for diet, cigarette smoke, and social class. Intense industrial heat emerged as a previously unreported risk factor, statistically significant even after adjustment for diet and cigarette smoke. No association was found between NPC and formaldehyde.
The objective of this study was to establish baseline data about air pollutants potentially related to nasopharyngeal carcinoma (NPC) in the Federal Territory and Selangor, Malaysia. During 1991-1993, ambient air quality was monitored at 42 work sites representing ten industrial sectors: adhesive manufacturing, foundries, latex processing, metalworking, plywood/veneer milling, ricemilling, rubber tire manufacturing, sawmilling, shoemaking, and textile related industries. At each work site, aerosol particle size distributions and concentrations of formaldehyde, benzene, toluene, isopropyl alcohol, and furfural were measured. Mean aerosol particle concentrations ranged from 61 micrograms/m3 in foundries to 5,578 micrograms/m3 in ricemills, with five industries (adhesives, metalworking, ricemilling, sawmilling, and shoemaking) exceeding the US EPA 24-hr ambient air standard for PM-10. Formaldehyde concentrations exceeded the threshold limit value (TLV) in adhesives factories. Other vapours and elements measured were well below TLVs.
We interviewed 282 histologically confirmed cases of nasopharyngeal carcinoma (NPC) in Chinese residents of Selangor and the Federal Territory, Malaysia, and an equal number of Chinese age-, sex-, and length-of-residence-matched controls sampled from the general population. Consumption of 55 dietary items during childhood, and 5 years pre-diagnosis of NPC, was analyzed by univariate and multivariate methods. Four salted preserved foods (fish, leafy vegetables, egg and root), fresh pork/beef organ meats and beer and liquor consumption exhibited strong positive associations, and 4 vegetable/fruit combinations strong negative associations with NPC. Factor analysis and multivariable modeling using estimated factor scores strongly supported separate effects on NPC of vegetables/fruits, salted preserved foods, pork/beef organ meats and beer/liquor consumption. Multivariable modeling associated NPC most clearly with high consumption of salted fish, salted eggs, pork/beef liver and beer and low consumption of Chinese flowering cabbage, oranges/tangerines and shrimp. A strong residual association of social class with NPC remained after adjustment for diet, which is consistent with a substantial role for non-dietary environmental factors.
For x- and gamma- irradiations delivering entrance doses from 2- up to 1000 Gy to commercial 1.0 mm thick borosilicate glass microscope slides, study has been made of their thermoluminescence yield. With an effective atomic number of 10.6 (approximating bone equivalence), photon energy dependency is apparent in the low x-ray energy range, with interplay between the photoelectric effect and attenuation. As an example, over the examined dose range, at 120 kVp the photon sensitivity has been found to be some 5× that of 60Co gamma irradiations, also with repeatability to within ~1%. The glow-curves, taking the form of a single prominent broad peak, have been deconvolved yielding at best fit a total of five peaks, the associated activation energies and frequency factors also being obtained. The results indicate borosilicate glass slides to offer promising performance as a low-cost passive radiation dosimeter, with utility for both radiotherapy and industrial applications.
Study has been made of the thermoluminescence (TL) yield of various glass-based commercial kitchenware (Reko-China, Skoja-France, Godis-China, Glass Tum-Malaysia, Lodrat-France). Interest focuses on their potential for retrospective dosimetry. Use was made of a60Co gamma-ray irradiator, delivering doses in the range 2-10 Gy. Results for the various media show all the glassware brands to yield linearity of response against dose, with a lower limit of detection of ∼0.06 and ∼0.08 Gy for loose and compact powdered samples. Among all of the brands under study, the Lodrat glassware provides the greatest sensitivity, at 6.0 E+02 nC g-1 Gy-1 and 1.5E+03 nC g-1 Gy-1 for compact- and loose-powdered forms respectively. This is sufficiently sensitive to allow its use as a TL material for accident dosimetry (2 Gy being the threshold dose for the onset of a number of deterministic biological effects, including skin erythema and sterility). Energy Dispersive X-ray (EDX) analyses have been conducted, showing the presence of a number of impurities (including C, O, Na, Mg, Al, Si, Ca and Br). Fading of the irradiated glasses show the amount of better than 3% and 5% of the stored energy for both loose and compact powdered samples within 9 days post irradiation. As such, commercial kitchenware glass has the potential to act as relatively good TL material for gamma radiation dosimetry at accident levels. This is the first endeavour reporting the TL properties of low cost commercial kitchenware glasses for gamma-ray doses in the few Gy range, literature existing for doses from 8 Gy to 200 Gy.
As a result of the various evolving needs, thermoluminescence dosimetry is constantly under development, with applications intended in environmental and personal radiation monitoring through to the sensing of radiotherapy and radiation processing doses. In radiotherapy dosimetry challenges include small-field profile evaluation, encompassing the fine beams of radiosurgery, evaluations confronting the steep dose gradients of electronic brachytherapy and the high dose rates of FLASH radiotherapy. Current work concerns the thermoluminescent dosimetric properties of commercial low-cost borosilicate glass in the form of thin (sub-mm to a few mm) plates, use being made of microscope cover-slips irradiated using clinical external-beam radiotherapy facilities as well as through use of 60Co gamma irradiators. In using megavoltage photons and MeV electrons, characterization of the dosimetric response has been made for cover-slips of thicknesses up to 4 mm. Reproducibility to within +/5% has been obtained. In particular, for doses up to 10 Gy, the borosilicate cover-slips have been demonstrated to have considerable potential for use in high spatial resolution radiotherapy dosimetry, down to 0.13 mm in present work, with a coefficient of determination in respect of linearity of >0.99 for the thinner cover-slips. Results are also presented for 0.13- and 1.00-mm thick cover slips irradiated to 60Co gamma-ray doses, initially in the range 5- to 25 Gy, subsequently extended to 5 kGy-25 kGy, again providing linear response.
Among the various types of decorative materials used in Bangladeshi dwellings, the marble/marble stone is one of the most common ones that used largely for enhancing the beauty and/or aristocracy of the dwelling environment. In this study, the most commonly used, six types of marble stones, have been analyzed for retrospective accident dosimetry. With the interest of characterizing several key thermoluminescence properties to examine their potentiality for dosimetry, annealing - irradiation - readout steps have been done chronologically which comprises the analysis of glow curves, relative sensitivity, dose dependence, repeatability and fading. Considering the various TL parameters, marble 'Carrara' imported from Italy present relatively better capability for reconstruction of radiation dose in the dose range of 10-50 Gy. From fading result, it is clear that for reconstruction of absorbed dose up to four weeks of post exposure, the marble 'Carrara' is found to be the most reliable media among the studied marble types. The Zeff values for the various marble samples are found to be in the range of 13.65-19.12, comparing favorably in replace of TLD-200 (Zeff = 16.3) which can be used for low-level environmental radiation dosimetry. Present work constitutes the first study to investigate the potentials of marble stone for reconstruction of absorbed dose in the range of 10-50 Gy dose.
We explore the utility of controlled low-doses (0.2-100 Gy) of photon irradiation as initiators of structural alteration in carbon-rich materials. To-date our work on carbon has focused on β-, x- and γ-irradiations and the monitoring of radiotherapeutic doses (from a few Gy up to some tens of Gy) on the basis of the thermoluminescence (TL) signal, also via Raman and X-ray photo-spectroscopy (XPS), providing analysis of the dose dependence of single-walled carbon nanotubes (SWCNT). The work has been extended herein to investigate possibilities for analysis of structural alterations in graphite-rich mixtures, use being made of two grades of graphite-rich pencil lead, 8H and 2B, both being in the form produced for mechanical pencils (propelling or clutch pencils). 2B has the greater graphite content (approaching 98 wt %), 8H being a mixture of C, O, Al and Si (with respective weight percentages 39.2, 38.2, 9.8 and 12.8). Working on media pre-annealed at 400 °C, both have subsequently been irradiated to penetrating photon-mediated doses. Raman spectroscopy analysis has been carried out using a 532 nm laser Raman spectrometer, while for samples irradiated to doses from 1 to 40 Gy, XPS spectra were acquired using Al Kα sources (hv ∼1400 eV); carbon KLL Auger peaks were acquired using 50 eV Pass Energy. At these relatively low doses, alterations in order-disorder are clearly observed, defect generation and internal annealing competing as dominating effects across the dose range.
Present research concerns the TL signal stored in chalk of the variety commercially available for writing on blackboards. Samples of this have been subjected to x-ray irradiation, the key dosimetric parameters investigated including dose and energy response, sensitivity, fading and glow curve analysis. Three types of chalk have been investigated, each in five different colours. The samples were annealed at 323 K prior to irradiation. For all three chalk types and all five colours, the dose response has been found linear over the investigated dose range, 0-9 Gy. Regardless of type or colour, photoelectric energy dependency is apparent at the low energy end down to the lowest investigated accelerating potential of 30 kV. Crayola (Yellow) has shown the greatest TL sensitivity, thus selection has been made to limit further analysis to this medium alone, specifically in respect of glow curve and fading study. In addition, elemental compositional and structural change characterizations were made for the same medium, utilizing Energy Dispersive X-Ray (EDX) and Raman spectroscopy, respectively.
Present work concerns polymer pencil-lead graphite (PPLG) and the potential use of these in elucidating irradiation-driven structural alterations. The study provides detailed analysis of radiation-induced structural interaction changes and the associated luminescence that originates from the energy absorption. Thermally stimulated emission from the different occupied defect energy levels reflects the received radiation dose, different for the different diameter PPLGs. The PPLG samples have been exposed to photon irradiation, specifically x-ray doses ranging from 1 to 10 Gy, extended to 30-200 Gy through use of a60Co gamma-ray source. Trapping parameters such as order of kinetics, activation energy and frequency factor are estimated using Chen's peak-shape method for a fixed-dose of 30 Gy. X-ray diffractometry was used to characterize the crystal structure of the PPLG, the aim being to identify the degree of structural order, atomic spacing and lattice constants of the various irradiated PPLG samples. The mean atomic spacing and degree of structural order for the different diameter PPLG are found to be 0.3332 nm and 26.6° respectively. Photoluminescence spectra from PPLG arising from diode laser excitation at 532 nm consist of two adjacent peaks, 602 nm (absorption) and 1074 nm (emission), with mean energy band gap values within the range 1.113-1.133 eV.
Brachytherapy is commonly used in treatment of cervical, prostate, breast and skin cancers, also for oral cancers, typically via the application of sealed radioactive sources that are inserted within or alongside the area to be treated. A particular aim of the various brachytherapy techniques is to accurately transfer to the targeted tumour the largest possible dose, at the same time minimizing dose to the surrounding normal tissue, including organs at risk. The dose fall-off with distance from the sources is steep, the dose gradient representing a prime factor in determining the dose distribution, also representing a challenge to the conduct of measurements around sources. Amorphous borosilicate glass (B2O3) in the form of microscope cover slips is recognized to offer a practicable system for such thermoluminescence dosimetry (TLD), providing for high-spatial resolution (down to
The present study continues research into the utilisation of carbonaceous media for medical radiation dosimetry, focusing on the effects of surface area-to-volume ratio and carbon content on structural interaction alterations and dosimetric properties in sheet- and bead-type graphitic materials (with the respective carbon content of ∼98 wt% and ∼90 wt%). Using 60Co gamma-rays and doses from 0.5 Gy to 20 Gy, the study has been made of the response of commercially available graphite in the form of 0.1 mm, 0.2 mm, 0.3 mm and 0.5 mm thick sheets, also of activated carbon beads. Confocal Raman and photoluminescence spectroscopy have been employed, examining radiation-induced structural interaction alterations. Dose-dependent variation in the Raman intensity ratio ID/IG relates to the varying dominance of defect generation and dose-driven defect annealing. Of the various thickness graphite sheets, the 0.1 mm thick medium possesses the greatest surface area-to-volume ratio. Perhaps unsurprisingly, it also exhibits the greatest thermoluminescence (TL) yield compared to that of the other carbonaceous sheet foils used herein. Moreover, the second greatest mass-normalised TL yield has been observed to be that of the porous beads, reflected in the greater defect density (ID/IG > 2) when compared to the other media, due in part to their inherent feature of large internal surface area. Considering the challenge posed in matching skin thickness with skin dose, the near tissue equivalent graphite sheets show particular promise as a skin dosimeter, sensitive as a function of depth.
The epithelial-mesenchymal transition (EMT) is a crucial process in cancer progression and metastasis. Study of metabolic changes during the EMT process is important in seeking to understand the biochemical changes associated with cancer progression, not least in scoping for therapeutic strategies aimed at targeting EMT. Due to the potential for high sensitivity and specificity, Raman spectroscopy was used here to study the metabolic changes associated with EMT in human breast cancer tissue. For Raman spectroscopy measurements, tissue from 23 patients were collected, comprising non-lesional, EMT and non-EMT formalin-fixed and paraffin embedded breast cancer samples. Analysis was made in the fingerprint Raman spectra region (600-1800 cm-1) best associated with cancer progression biochemical changes in lipid, protein and nucleic acids. The ANOVA test followed by the Tukey's multiple comparisons test were conducted to see if there existed differences between non-lesional, EMT and non-EMT breast tissue for Raman spectroscopy measurements. Results revealed that significant differences were evident in terms of intensity between the non-lesional and EMT samples, as well as the EMT and non-EMT samples. Multivariate analysis involving independent component analysis, Principal component analysis and non-negative least square were used to analyse the Raman spectra data. The results show significant differences between EMT and non-EMT cancers in lipid, protein, and nucleic acids. This study demonstrated the capability of Raman spectroscopy supported by multivariate analysis in analysing metabolic changes in EMT breast cancer tissue.
Epithelial-mesenchymal transition (EMT) is increasingly explored in cancer progression. Considering that triple negative (TN) breast cancer has the poorest survival among molecular subtypes, we investigated 49 TN, 45 luminal and 25 HER2-enriched female breast carcinomas for EMT expression (using E-cadherin and vimentin immunohistochemistry) against lymphovascular and/or lymph node invasion. E-cadherin and vimentin expressions were semi-quantitated for positive- cancer cells (0=0-<1%, 1=1-10%, 2 =11-50%, 3=>50%) and staining intensity (0=negative, 1=weak, 2=moderate, 3=strong), with final score (low=0-4 and high=6-9) derived by multiplying percentage and intensity scores for each marker. Low E-cadherin and/or high vimentin scores defined EMT positivity. Low E-cadherin co-existing with high vimentin defined "complete" (EMT-CV), while low E-cadherin (EMT-C) or high vimentin (EMT-V) occurring independently defined "partial" subsets. 38 (31.9%) cancers expressed EMT, while 59.2 % TN, 13.3% luminal and 12% HER2-enriched cancers expressed EMT (p<0.05). Among the cancers with lymphovascular and/or lymph node invasion, EMT positivity by molecular types were 66.7% TN, 7.4% luminal and 11.8% HER2-enriched (p<0.05). Although EMT-V, associated with stem-cell properties was the dominant TN EMT profile, EMT-CV, a profile linked to vascular metastases, was encountered only in TN. EMT appears important in TN cancer and different EMT profiles may be associated with its aggressive nature.
Using tailor-made sub-mm dimension doped-silica fibres, thermoluminescent dosimetric studies have been performed for α-emitting sources of 223RaCl2 (the basis of the Bayer Healthcare product Xofigo®). The use of 223RaCl2 in the palliative treatment of bone metastases resulting from late-stage castration-resistant prostate cancer focuses on its favourable uptake in metabolically active bone metastases. Such treatment benefits from the high linear energy transfer (LET) and associated short path length (<100µm) of the α-particles emitted by 223Ra and its decay progeny. In seeking to provide for in vitro dosimetry of the α-particles originating from the 223Ra decay series, investigation has been made of the TL yield of various forms of Ge-doped SiO2 fibres, including photonic crystal fibre (PCF) collapsed, PCF uncollapsed, flat and single-mode fibres. Irradiations of the fibres were performed at the UK National Physical Laboratory (NPL). Notable features are the considerable sensitivity of the dosimeters and an effective atomic number Zeff approaching that of bone, the glass fibres offering the added advantage of being able to be placed directly into liquid. The outcome of present research is expected to inform development of doped fibre dosimeters of versatile utility, including for applications as detailed herein.