Displaying all 3 publications

Abstract:
Sort:
  1. Zainul R, Abd Azis N, Md Isa I, Hashim N, Ahmad MS, Saidin MI, et al.
    Sensors (Basel), 2019 Feb 22;19(4).
    PMID: 30813385 DOI: 10.3390/s19040941
    This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10-8⁻7.0 × 10-7 M (R² = 0.9876), 1.0 × 10-6⁻1.0 × 10-5 M (R² = 0.9836) and 3.0 × 10-5⁻3.0 × 10-4 M (R² = 0.9827) with a limit of detection of 4.4 × 10-9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.
  2. Yulkifli Y, Yandes WP, Isa IM, Hashim N, Ulianas A, Sharif SNM, et al.
    Sensors (Basel), 2023 Oct 10;23(20).
    PMID: 37896460 DOI: 10.3390/s23208366
    The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine the electrocatalytic activities of modified paste electrodes. The modified electrode's sensitivity and selectivity have been considered in terms of the composition of the modifier in percentages, the types of supporting electrolytes used, the pH of the electrolyte, and square-wave voltammetry parameters like frequency, pulse size, and step increment. Square-wave voltammetry is performed by applying a small amplitude square-wave voltage to a scanning potential from -0.3 V to +1.0 V, demonstrating a quick response time and high sensitivity. The ZHN-SDS-BP/MWCNT sensor demonstrated a linear range for uric acid and bisphenol A from 5.0 µM to 0.7 mM, with a limit of detection of 0.4 µM and 0.8 µM, respectively, with good reproducibility, repeatability, and stability as well. The modified paste electrode was successfully used in the determination of uric acid and bisphenol A in samples of human urine and lake water.
  3. Hoffmann AA, Ahmad NW, Keong WM, Ling CY, Ahmad NA, Golding N, et al.
    iScience, 2024 Feb 16;27(2):108942.
    PMID: 38327789 DOI: 10.1016/j.isci.2024.108942
    Partial replacement of resident Aedes aegypti mosquitoes with introduced mosquitoes carrying certain strains of inherited Wolbachia symbionts can result in transmission blocking of dengue and other viruses of public health importance. Wolbachia strain wAlbB is an effective transmission blocker and stable at high temperatures, making it particularly suitable for hot tropical climates. Following trial field releases in Malaysia, releases using wAlbB Ae. aegypti have become operationalized by the Malaysian health authorities. We report here on an average reduction in dengue fever of 62.4% (confidence intervals 50-71%) in 20 releases sites when compared to 76 control sites in high-rise residential areas. Importantly the level of dengue reduction increased with Wolbachia frequency, with 75.8% reduction (61-87%) estimated at 100% Wolbachia frequency. These findings indicate large impacts of wAlbB Wolbachia invasions on dengue fever incidence in an operational setting, with incidence expected to further decrease as wider areas are invaded.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links