Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Hii J, Kan S, Pereira M, Parmar SS, Campos RL, Chan MK
    Trop Geogr Med, 1985 Jun;37(2):93-101.
    PMID: 3898498
    An epidemiological survey of filariasis and malaria in Banggi Island and Upper Kinabatangan, Sabah, revealed microfilarial rates of 7.2% and 8.6% respectively and malaria prevalence of 9.7% and 16.9% respectively. Wuchereria bancrofti was a rural nocturnally periodic type with a periodicity index of 137.2 and average peak hour at 01.32 hrs; 9.2% of microfilaremic carriers as compared to 2.4% amicrofilaremic subjects had clinical filariasis. The Plasmodium falciparum: P. vivax: P. malariae ratios were 1:1:0.17 and 1.4:1:0.12 for Banggi and Upper Kinabatangan respectively. Anopheles flavirostris was incriminated as a new malaria vector in Banggi where the well-known primary malaria vector is An. balabacensis. The latter was also found for the first time to be a vector of rural W. bancrofti in Upper Kinabatangan. Experimental feeding also showed that L3 larvae of W. bancrofti were recovered at low rates from An. balabacensis. Aedes togoi appeared to be a suitable laboratory vector for W. bancrofti.
  2. Mahboob T, Nawaz M, de Lourdes Pereira M, Tian-Chye T, Samudi C, Sekaran SD, et al.
    Sci Rep, 2020 06 02;10(1):8954.
    PMID: 32488154 DOI: 10.1038/s41598-020-65728-0
    Acanthamoeba, a genus that contains at least 24 species of free-living protozoa, is ubiquitous in nature. Successful treatment of Acanthamoeba infections is always very difficult and not always effective. More effective drugs must be developed, and medicinal plants may have a pivotal part in the future of drug discovery. Our research focused on investigating the in vitro anti- acanthamoebic potential of Leea indica and its constituent gallic acid in different concentrations. Water and butanol fractions exhibited significant amoebicidal activity against trophozoites and cysts. Gallic acid (100 µg/mL) revealed 83% inhibition of trophozoites and 69% inhibition of cysts. The butanol fraction induced apoptosis in trophozoites, which was observed using tunnel assay. The cytotoxicity of the fractions and gallic acid was investigated against MRC-5 and no adverse effects were observed. Gallic acid was successfully loaded within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with 82.86% encapsulation efficiency, while gallic acid showed 98.24% in vitro release at 48 hours. Moreover, the gallic acid encapsulated in the PLGA nanoparticles exhibited 90% inhibition against trophozoites. In addition, gallic acid encapsulated nanoparticles showed reduced cytotoxicity towards MRC-5 compared to gallic acid, which evidenced that natural product nanoencapsulation in polymeric nanoparticles could play an important role in the delivery of natural products.
  3. Bondhon TA, Fatima A, Jannat K, Hasan A, Jahan R, Nissapatorn V, et al.
    Trop Biomed, 2021 Jun 01;38(2):214-221.
    PMID: 34172713 DOI: 10.47665/tb.38.2.060
    Corona virus SARS-CoV-2-induced viral disease (COVID-19) is a zoonotic disease that was initially transmitted from animals to humans. The virus surfaced towards the end of December 2019 in Wuhan, China where earlier SARS (Severe Acute Respiratory Syndrome) had also surfaced in 2003. Unlike SARS, SARS-CoV-2 (a close relative of the SARS virus) created a pandemic, and as of February 24 2021, caused 112,778,672 infections and 2,499,252 deaths world-wide. Despite the best efforts of scientists, no drugs against COVID-19 are yet in sight; five vaccines have received emergency approval in various countries, but it would be a difficult task to vaccinate twice the world population of 8 billion. The objective of the present study was to evaluate through in silico screening a number of phytochemicals in Allium cepa (onion) regarding their ability to bind to the main protease of COVID-19 known as the 3C-like protease or 3CLpro, (PDB ID: 6LU7), 3CLpro of SARS (PDB ID: 3M3V), and human angiotensin converting enzyme-2 (ACE-2), [PDB ID: 1R42], which functions as a receptor for entry of the virus into humans. Molecular docking (blind docking, that is docking not only against any target pocket) were done with the help of AutoDockVina. It was observed that of the twenty-two phytochemicals screened, twelve showed good binding affinities to the main protease of SARS-CoV-2. Surprisingly, the compounds also demonstrated good binding affinities to ACE-2. It is therefore very likely that the binding affinities shown by these compounds against both 3CLpro and ACE-2 merit further study for their potential use as therapeutic agents.
  4. Paul AK, Jahan R, Bondhon TA, Jannat K, Hasan A, Rahmatullah M, et al.
    Trop Biomed, 2021 Sep 01;38(3):360-365.
    PMID: 34508344 DOI: 10.47665/tb.38.3.079
    COVID-19, caused by the SARS-CoV-2 virus, can lead to massive inflammation in the gastrointestinal tract causing severe clinical symptoms. SARS-CoV-2 infects lungs after binding its spike proteins with alveolar angiotensin-converting enzyme 2 (ACE2), and it also triggers inflammation in the gastrointestinal tract. SARS-CoV-2 invades the gastrointestinal tract by interacting with Toll-like receptor-4 (TLR4) that induces the expression of ACE2. The influx of ACE2 facilitates cellular binding of more SARS-CoV-2 and causes massive gastrointestinal inflammation leading to diarrhea. Diarrhea prior to COVID-19 infection or COVID-19-induced diarrhea reportedly ends up in a poor prognosis for the patient. Flavonoids are part of traditional remedies for gastrointestinal disorders. Preclinical studies show that flavonoids can prevent infectious diarrhea. Recent studies show flavonoids can inhibit the multiplication of SARS-CoV-2. In combination with vitamin D, flavonoids possibly activate nuclear factor erythroid-derived-2-related factor 2 that downregulates ACE2 expression in cells. We suggest that flavonoids have the potential to prevent SARS-CoV-2 induced diarrhea.
  5. Jannat K, Hasan A, Bondhon TA, Mahboob T, Paul AK, Jahan R, et al.
    Trop Biomed, 2021 Dec 01;38(4):540-551.
    PMID: 35001920 DOI: 10.47665/tb.38.4.097
    Despite the huge loss of lives and massive disruption of the world economy by the COVID -19 pandemic caused by SARS -CoV-2, scientists are yet to come out with an effective therapeutic against this viral disease . Several vaccines have obtained 'emergency approval ', but difficulties are being faced in the even distribution of vaccines amongst high- and low- income countries . On top of it, comorbidities associated with COVID -19 like diabetes, hypertension and malaria can seriously impede the treatment of the main disease, thus increasing the fatality rate . This is more so in the context of sub -Saharan African and south Asian countries . Our objective was to demonstrate that a single plant containing different phytoconstituents may be used for treatment of COVID -19 and comorbidities . Towards initial selection of a plant, existing scientific literature was scanned for reported relevant traditional uses, phytochemicals and pharmacological activities of a number of plants and their phytoconstituents pertaining to treatment of COVID-19 symptoms and comorbidities. Molecular docking studies were then performed with phytochemicals of the selected plant and SARS-CoV-2 components - Mpro, and spike protein receptor binding domain and hACE2 interface using AutoDock V ina. We showed that crude extracts of an indigenous African plant, Costus afer having traditional antidiabetic and antimalarial uses, has phytochemicals with high binding affinities for Mpro, and /or spike protein receptor binding domain and hACE2 interface; the various phytochemicals with predicted high binding energies include aferoside C, dibutyl phthalate, nerolidol, suginal, and ± -terpinene, making them potential therapeutics for COVID -19. The results suggest that crude extracts and phytochemicals of C. afer can function as a treatment modality for COVID -19 and comorbidities like especially diabetes and malaria .
  6. Hasan A, Jannat K, Bondhon TA, Jahan R, Hossan MS, de Lourdes Pereira M, et al.
    PMID: 34376138 DOI: 10.2174/1871526521666210729164054
    OBJECTIVE: To evaluate the efficacy of reported anti-malarial phytochemicals as lead compounds for possible drug development against COVID-19.

    METHODS: An in silico approach was used in this study to determine through molecular docking the binding affinities and site of binding of these phytochemicals to the 3C-like protease of COVID-19 which is considered as the main protease of the virus.

    RESULTS: A number of anti-malarial phytochemicals like apigenin-7-O-glucoside, decurvisine, luteolin-7-O-glucoside, sargabolide J, and shizukaols A, B, F, and G showed predicted high binding energies with G values of -8.0 kcal/mol or higher. Shizukaols F and B demonstrated the best binding energies of -9.5 and -9.8, respectively. The acridone alkaloid 5-hydroxynoracronycine also gave a predicted high binding energy of -7.9 kcal/mol.

    CONCLUSION: This is for the first time that decursivine and several shizukaols were reported as potential anti-viral agents. These compounds merit further studies to determine whether they can be effective drug candidates against COVID-19.

  7. Mitsuwan W, Sin C, Keo S, Sangkanu S, de Lourdes Pereira M, Jimoh TO, et al.
    Heliyon, 2021 May;7(5):e06976.
    PMID: 34027178 DOI: 10.1016/j.heliyon.2021.e06976
    Plants with medicinal properties have been used in the treatment of several infectious diseases, including Acanthamoeba infections. The medicinal properties of Cambodian plant extracts; Annona muricata and Combretum trifoliatum were investigated against Acanthamoeba triangularis. A total of 39 plant extracts were evaluated and, as a result, 22 extracts showed positive anti-Acanthamoeba activity. Of the 22 extracts, 9 and 4 extracts showed anti-Acanthamoeba activity against trophozoites and cysts of A. triangularis, respectively. The minimum inhibitory concentration of A. muricata and C. trifoliatum extracts against trophozoites and cysts was 500 and 1,000 μg/mL, respectively. The combination of A. muricata at 1/4×MIC with chlorhexidine at 1/8×MIC demonstrated a synergistic effect against trophozoites, but partial synergy against cysts. A 40% reduction in trophozoites and 60% of cysts adhered to the plastic surface treated with both extracts at 1/2×MIC were noted comparing to the control (P < 0.05). Furthermore, a reduction of 80% and 90% of trophozoites adhered to the surface was observed after pre-treatment with A. muricata and C. trifoliatum extracts, respectively. A 90% of cysts adhered to the surface was decreased with pre-treatment of A. muricata at 1/2×MIC (P < 0.05). A 75% of trophozoites and cysts from Acanthamoeba adhered to the surface were removed after treatment with both extracts at 4×MIC (P < 0.05). In the model of contact lens, 1 log cells/mL of trophozoites and cysts was significantly decreased post-treatment with both extracts compared to the control. Trophozoites showed strong loss of acanthopodia and thorn-like projection pseudopodia, while cysts demonstrated retraction and folded appearance treated with both extracts when observed by SEM, which suggests the potential benefits of the medicinal plants A. muricata and C. trifoliatum as an option treatment against Acanthamoeba infections.
  8. Mitsuwan W, Sangkanu S, Romyasamit C, Kaewjai C, Jimoh TO, de Lourdes Pereira M, et al.
    PMID: 33238231 DOI: 10.1016/j.ijpddr.2020.11.001
    Curcuma longa and Curcumin have been documented to have a wide spectrum of pharmacological effects, including anti-Acanthamoeba activity. Hence, this study sought to explore the anti-adhesion activity of C. longa extract and Curcumin against Acanthamoeba triangularis trophozoites and cysts in plastic and contact lenses. Our results showed that C. longa extract and Curcumin significantly inhibited the adhesion of A. triangularis trophozoites and cysts to the plastic surface, as investigated by the crystal violet assay (P 
  9. Sangkanu S, Mitsuwan W, Mahabusarakam W, Jimoh TO, Wilairatana P, Girol AP, et al.
    Sci Rep, 2021 Apr 13;11(1):8053.
    PMID: 33850179 DOI: 10.1038/s41598-021-87381-x
    Acanthamoeba spp. can cause amoebic keratitis (AK). Chlorhexidine is effective for AK treatment as monotherapy, but with a relative failure on drug bioavailability in the deep corneal stroma. The combination of chlorhexidine and propamidine isethionate is recommended in the current AK treatment. However, the effectiveness of treatment depends on the parasite and virulence strains. This study aims to determine the potential of Garcinia mangostana pericarp extract and α-mangostin against Acanthamoeba triangularis, as well as the combination with chlorhexidine in the treatment of Acanthamoeba infection. The minimal inhibitory concentrations (MICs) of the extract and α-mangostin were assessed in trophozoites with 0.25 and 0.5 mg/mL, for cysts with 4 and 1 mg/mL, respectively. The MIC of the extract and α-mangostin inhibited the growth of A. triangularis trophozoites and cysts for up to 72 h. The extract and α-mangostin combined with chlorhexidine demonstrated good synergism, resulting in a reduction of 1/4-1/16 of the MIC. The SEM results showed that Acanthamoeba cells treated with a single drug and its combination caused damage to the cell membrane and irregular cell shapes. A good combination displayed by the extract or α-mangostin and chlorhexidine, described for the first time. Therefore, this approach is promising as an alternative method for the management of Acanthamoeba infection in the future.
  10. Sama-Ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, et al.
    F1000Res, 2022;11:1274.
    PMID: 36936052 DOI: 10.12688/f1000research.126227.1
    Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of the agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results obtained provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
  11. Chuprom J, Kidsin K, Sangkanu S, Nissapatorn V, Wiart C, de Lourdes Pereira M, et al.
    Vet Res Commun, 2023 Jun;47(2):523-538.
    PMID: 36260188 DOI: 10.1007/s11259-022-09999-0
    This study aimed to assess antibacterial activity of Knema retusa wood extract (KRe) against antibiotic resistant staphylococci which are causative agents of bovine mastitis. From 75 cases of intramammary infections in dairy cows, 66 staphylococcal isolates were collected, including 11 Staphylococcus aureus isolates (17%) and 55 coagulase-negative staphylococci (83%). Sixty isolates (91%) formed strong biofilms. KRe had minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) against the isolates ranging 32-256 ug/mL and 64-512 ug/mL, respectively. Two-hour KRe exposures at 4×MIC, viabilities of S. aureus and S. haemolyticus decreased by 3 log10 compared to the control. Scanning EM (SEM) showed that KRe disrupted the bacterial cells of both species. KRe at 1/16×MIC significantly inhibited biofilm formation (P 
  12. Boonhok R, Sangkanu S, Chuprom J, Srisuphanunt M, Norouzi R, Siyadatpanah A, et al.
    Pathogens, 2021 Jul 04;10(7).
    PMID: 34357992 DOI: 10.3390/pathogens10070842
    Peganum harmala, a well-known medicinal plant, has been used for several therapeutic purposes as it contains numerous pharmacological active compounds. Our study reported an anti-parasitic activity of P. harmala seed extract against Acanthamoeba triangularis. The stress induced by the extract on the surviving trophozoites for Acanthamoeba encystation and vacuolization was examined by microscopy, and transcriptional expression of Acanthamoeba autophagy-related genes was investigated by quantitative PCR. Our results showed that the surviving trophozoites were not transformed into cysts, and the number of trophozoites with enlarged vacuoles were not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of tested AcATG genes, i.e., ATG3, ATG8b, and ATG16, was at a basal level along the treatment. However, upregulation of AcATG16 at 24 h post treatment was observed, which may indicate an autophagic activity of this protein in response to the stress. Altogether, these data revealed the anti-Acanthamoeba activity of P. harmala extract and indicated the association of autophagy mRNA expression and cyst formation under the extract stress, representing a promising plant for future drug development. However, further identification of an active compound and a study of autophagy at the protein level are needed.
  13. Bousquet J, Agache I, Blain H, Jutel M, Ventura MT, Worm M, et al.
    Allergy, 2021 10;76(10):2952-2964.
    PMID: 33811358 DOI: 10.1111/all.14838
    Older adults, especially men and/or those with diabetes, hypertension, and/or obesity, are prone to severe COVID-19. In some countries, older adults, particularly those residing in nursing homes, have been prioritized to receive COVID-19 vaccines due to high risk of death. In very rare instances, the COVID-19 vaccines can induce anaphylaxis, and the management of anaphylaxis in older people should be considered carefully. An ARIA-EAACI-EuGMS (Allergic Rhinitis and its Impact on Asthma, European Academy of Allergy and Clinical Immunology, and European Geriatric Medicine Society) Working Group has proposed some recommendations for older adults receiving the COVID-19 vaccines. Anaphylaxis to COVID-19 vaccines is extremely rare (from 1 per 100,000 to 5 per million injections). Symptoms are similar in younger and older adults but they tend to be more severe in the older patients. Adrenaline is the mainstay treatment and should be readily available. A flowchart is proposed to manage anaphylaxis in the older patients.
  14. Bousquet J, Melén E, Haahtela T, Koppelman GH, Togias A, Valenta R, et al.
    Allergy, 2023 Feb 17.
    PMID: 36799120 DOI: 10.1111/all.15679
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of "one-airway-one-disease," coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the "Epithelial Barrier Hypothesis." This review determined that the "one-airway-one-disease" concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme "allergic" (asthma) phenotype combining asthma, rhinitis, and conjunctivitis. Rhinitis alone and rhinitis and asthma multimorbidity represent two distinct diseases with the following differences: (i) genomic and transcriptomic background (Toll-Like Receptors and IL-17 for rhinitis alone as a local disease; IL-33 and IL-5 for allergic and non-allergic multimorbidity as a systemic disease), (ii) allergen sensitization patterns (mono- or pauci-sensitization versus polysensitization), (iii) severity of symptoms, and (iv) treatment response. In conclusion, rhinitis alone (local disease) and rhinitis with asthma multimorbidity (systemic disease) should be considered as two distinct diseases, possibly modulated by the microbiome, and may be a model for understanding the epidemics of chronic and autoimmune diseases.
  15. Bousquet J, Schünemann HJ, Sousa-Pinto B, Zuberbier T, Togias A, Samolinski B, et al.
    PMID: 38971567 DOI: 10.1016/j.jaip.2024.06.040
    The traditional healthcare model is focused on diseases (medicine and natural science) and does not acknowledge patients' resources and abilities to be experts in their own life based on their lived experiences. Improving healthcare safety, quality and coordination, as well as quality of life, are important aims in the care of patients with chronic conditions. Person-centred care needs to ensure that people's values and preferences guide clinical decisions. This paper reviews current knowledge to develop (i) digital care pathways for rhinitis and asthma multimorbidity and (ii) digitally-enabled person-centred care (1). It combines all relevant research evidence, including the so-called real-world evidence, with the ultimate goal to develop digitally-enabled, patient-centred care. The paper includes (i) Allergic Rhinitis and its Impact on Asthma (ARIA), a two-decade journey, (ii) Grading of Recommendations, Assessment, Development and Evaluation (GRADE), the evidence-based model of guidelines in airway diseases, (iii) mHealth impact on airway diseases, (iv) from guidelines to digital care pathways, (v) embedding Planetary Health, (vi) novel classification of rhinitis and asthma, (vi) embedding real-life data with population-based studies, (vii) the ARIA-EAACI strategy for the management of airway diseases using digital biomarkers, (viii) Artificial Intelligence, (ix) the development of digitally-enabled ARIA Person-Centred Care and (x) the political agenda. The ultimate goal is to propose ARIA 2024 guidelines centred around the patient in order to make them more applicable and sustainable.
  16. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2021;81(11):970.
    PMID: 34793584 DOI: 10.1140/epjc/s10052-021-09721-5
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 Te at the CERN LHC, corresponding to an integrated luminosity of 137 fb - 1 collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325 Ge for a massless neutralino, and a neutralino mass up to 700 Ge for a top squark mass of 1150 Ge . Top squarks with masses from 145 to 295 Ge , for neutralino masses from 0 to 100 Ge , with a mass difference between the top squark and the neutralino in a window of 30 Ge around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 Ge .
  17. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Dragicevic M, et al.
    Phys Rev Lett, 2021 Nov 05;127(19):191801.
    PMID: 34797136 DOI: 10.1103/PhysRevLett.127.191801
    The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302  pb^{-1}. Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as σ_{WW}=37.0_{-5.2}^{+5.5}(stat)_{-2.6}^{+2.7}(syst)  pb, σ_{WZ}=6.4_{-2.1}^{+2.5}(stat)_{-0.3}^{+0.5}(syst)  pb, and σ_{ZZ}=5.3_{-2.1}^{+2.5}(stat)_{-0.4}^{+0.5}(syst)  pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy.
  18. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Dragicevic M, et al.
    Phys Rev Lett, 2021 Dec 24;127(26):261804.
    PMID: 35029469 DOI: 10.1103/PhysRevLett.127.261804
    A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137  fb^{-1} of proton-proton collisions at sqrt[s]=13  TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the end cap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and τ^{+}τ^{-} are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.
  19. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Sep 22;131(12):121901.
    PMID: 37802954 DOI: 10.1103/PhysRevLett.131.121901
    The dependence of the ratio between the B_{s}^{0} and B^{+} hadron production fractions, f_{s}/f_{u}, on the transverse momentum (p_{T}) and rapidity of the B mesons is studied using the decay channels B_{s}^{0}→J/ψϕ and B^{+}→J/ψK^{+}. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6  fb^{-1}. The f_{s}/f_{u} ratio is observed to depend on the B p_{T} and to be consistent with becoming asymptotically constant at large p_{T}. No rapidity dependence is observed. The ratio of the B^{0} to B^{+} meson production fractions, f_{d}/f_{u}, is also measured, for the first time in proton-proton collisions, using the B^{0}→J/ψK^{*0} decay channel. The result is found to be within 1 standard deviation of unity and independent of p_{T} and rapidity, as expected from isospin invariance.
  20. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Oct 13;131(15):151803.
    PMID: 37897747 DOI: 10.1103/PhysRevLett.131.151803
    We present an observation of photon-photon production of τ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404  μb^{-1} collected by the CMS experiment at a center-of-mass energy per nucleon pair of sqrt[s_{NN}]=5.02  TeV. The γγ→τ^{+}τ^{-} process is observed for τ^{+}τ^{-} events with a muon and three charged hadrons in the final state. The measured fiducial cross section is σ(γγ→τ^{+}τ^{-})=4.8±0.6(stat)±0.5(syst)  μb, where the second (third) term corresponds to the statistical (systematic) uncertainty in σ(γγ→τ^{+}τ^{-}) in agreement with leading-order QED predictions. Using σ(γγ→τ^{+}τ^{-}), we estimate a model-dependent value of the anomalous magnetic moment of the τ lepton of a_{τ}=0.001_{-0.089}^{+0.055}.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links