METHODS: This was a secondary analysis of an international prospective cohort study from 2012 to 2014. This study included patients who were 45 yr of age or older who underwent major inpatient noncardiac surgery. Data were collected perioperatively and at 1 yr after surgery to assess for the development of persistent incisional pain (pain present around incision at 1 yr after surgery).
RESULTS: Among 14,831 patients, 495 (3.3%; 95% CI, 3.1 to 3.6) reported persistent incisional pain at 1 yr, with an average pain intensity of 3.6 ± 2.5 (0 to 10 numeric rating scale), with 35% and 14% reporting moderate and severe pain intensities, respectively. More than half of patients with persistent pain reported needing analgesic medications, and 85% reported interference with daily activities (denominator = 495 in the above proportions). Risk factors for persistent pain included female sex (P = 0.007), Asian ethnicity (P < 0.001), surgery for fracture (P < 0.001), history of chronic pain (P < 0.001), coronary artery disease (P < 0.001), history of tobacco use (P = 0.048), postoperative patient-controlled analgesia (P < 0.001), postoperative continuous nerve block (P = 0.010), insulin initiation within 24 h of surgery (P < 0.001), and withholding nonsteroidal anti-inflammatory medication or cyclooxygenase-2 inhibitors on the day of surgery (P = 0.029 and P < 0.001, respectively). Older age (P < 0.001), endoscopic surgery (P = 0.005), and South Asian (P < 0.001), Native American/Australian (P = 0.004), and Latin/Hispanic ethnicities (P < 0.001) were associated with a lower risk of persistent pain.
CONCLUSIONS: Persistent incisional pain is a common complication of inpatient noncardiac surgery, occurring in approximately 1 in 30 adults. It results in significant morbidity, interferes with daily living, and is associated with persistent analgesic consumption. Certain demographics, ethnicities, and perioperative practices are associated with increased risk of persistent pain.
EDITOR’S PERSPECTIVE:
METHODS: The authors randomized 10,010 patients with or at risk of atherosclerosis and scheduled for noncardiac surgery in a 1:1:1:1 ratio to clonidine/aspirin, clonidine/aspirin placebo, clonidine placebo/aspirin, or clonidine placebo/aspirin placebo. Patients started taking aspirin or placebo just before surgery; those not previously taking aspirin continued daily for 30 days, and those taking aspirin previously continued for 7 days. Patients were also randomly assigned to receive clonidine or placebo just before surgery, with the study drug continued for 72 h.
RESULTS: Neither aspirin nor clonidine had a significant effect on the primary 1-yr outcome, a composite of death or nonfatal myocardial infarction, with a 1-yr hazard ratio for aspirin of 1.00 (95% CI, 0.89 to 1.12; P = 0.948; 586 patients [11.8%] vs. 589 patients [11.8%]) and a hazard ratio for clonidine of 1.07 (95% CI, 0.96 to 1.20; P = 0.218; 608 patients [12.1%] vs. 567 patients [11.3%]), with effect on death or nonfatal infarction. Reduction in death and nonfatal myocardial infarction from aspirin in patients who previously had percutaneous coronary intervention at 30 days persisted at 1 yr. Specifically, the hazard ratio was 0.58 (95% CI, 0.35 to 0.95) in those with previous percutaneous coronary intervention and 1.03 (95% CI, 0.91to 1.16) in those without (interaction P = 0.033). There was no significant effect of either drug on death, cardiovascular complications, cancer, or chronic incisional pain at 1 yr (all P > 0.1).
CONCLUSIONS: Neither perioperative aspirin nor clonidine have significant long-term effects after noncardiac surgery. Perioperative aspirin in patients with previous percutaneous coronary intervention showed persistent benefit at 1 yr, a plausible sub-group effect.
METHODS: We conducted an observational substudy of patients who had POAF, were at elevated cardiovascular risk, and were enrolled in the PeriOperative Ischemic Evaluation (POISE)-1, 2 and 3 trials between 2002 and 2021. POAF was defined as new, clinically important atrial fibrillation occurring within 30 days after surgery. We assessed the use of rhythm-control and anticoagulation treatment in response to POAF, at hospital discharge and at 30 days after surgery. We assessed for temporal trends using multivariable logistic regression.
RESULTS: Of the 27,896 patients included, 545 (1.9%) developed clinically important POAF. Patients received rhythm-control treatment in 48.6% of cases. The level of use of rhythm-control treatment increased over the course of the trials (POISE-1 vs POISE-2 vs POISE-3; 40.9% vs 49.5% vs 59.1%). A later randomization date was associated independently with use of rhythm-control treatment (odds ratio, 1.05 per year; 95% confidence interval, 1.01-1.09). Anticoagulation treatment was prescribed in 21% of POAF cases. The level of anticoagulation treatement use was higher in POISE-3, compared to that in the 2 previous trials (POISE-1 vs POISE-2 vs POISE-3-16.4% vs 16.5% vs 33.6%). A later randomization date was associated independently with use of anticoagulation treatment (odds ratio, 1.06 per year; 95% confidence interval, 1.02-1.11).
CONCLUSIONS: Despite the absence of randomized controlled trials, the level of use of rhythm-control and anticoagulation treatment for POAF is rising. High-quality trials are needed urgently to determine whether these interventions are safe and effective in this population.
Objective: To conduct a substudy of POISE-3 to determine whether a perioperative hypotension-avoidance strategy reduces the risk of acute kidney injury compared with a hypertension-avoidance strategy.
Design: Randomized clinical trial with 1:1 randomization to the intervention (a perioperative hypotension-avoidance strategy) or control (a hypertension-avoidance strategy).
Intervention: If the presurgery systolic blood pressure (SBP) is <130 mmHg, all antihypertensive medications are withheld on the morning of surgery. If the SBP is ≥130 mmHg, some medications (but not angiotensin receptor blockers [ACEIs], angiotensin receptor blockers [ARBs], or renin inhibitors) may be continued in a stepwise manner. During surgery, the patients' mean arterial pressure (MAP) is maintained at ≥80 mmHg. During the first 48 hours after surgery, some antihypertensive medications (but not ACEIs, ARBs, or renin inhibitors) may be restarted in a stepwise manner if the SBP is ≥130 mmHg.
Control: Patients receive their usual antihypertensive medications before and after surgery. The patients' MAP is maintained at ≥60 mmHg from anesthetic induction until the end of surgery.
Setting: Recruitment from 108 centers in 22 countries from 2018 to 2021.
Patients: Patients (~6800) aged ≥45 years having noncardiac surgery who have or are at risk of atherosclerotic disease and who routinely take antihypertensive medications.
Measurements: The primary outcome of the substudy is postoperative acute kidney injury, defined as an increase in serum creatinine concentration of either ≥26.5 μmol/L (≥0.3 mg/dL) within 48 hours of randomization or ≥50% within 7 days of randomization.
Methods: The primary analysis (intention-to-treat) will examine the relative risk and 95% confidence interval of acute kidney injury in the intervention versus control group. We will repeat the primary analysis using alternative definitions of acute kidney injury and examine effect modification by preexisting chronic kidney disease, defined as a prerandomization estimated glomerular filtration rate <60 mL/min/1.73 m2.
Results: Substudy results will be analyzed in 2022.
Limitations: It is not possible to mask patients or providers to the intervention; however, objective measures will be used to assess acute kidney injury.
Conclusions: This substudy will provide generalizable estimates of the effect of a perioperative hypotension-avoidance strategy on the risk of acute kidney injury.
METHODS: We conducted a trial involving patients undergoing noncardiac surgery. Patients were randomly assigned to receive tranexamic acid (1-g intravenous bolus) or placebo at the start and end of surgery (reported here) and, with the use of a partial factorial design, a hypotension-avoidance or hypertension-avoidance strategy (not reported here). The primary efficacy outcome was life-threatening bleeding, major bleeding, or bleeding into a critical organ (composite bleeding outcome) at 30 days. The primary safety outcome was myocardial injury after noncardiac surgery, nonhemorrhagic stroke, peripheral arterial thrombosis, or symptomatic proximal venous thromboembolism (composite cardiovascular outcome) at 30 days. To establish the noninferiority of tranexamic acid to placebo for the composite cardiovascular outcome, the upper boundary of the one-sided 97.5% confidence interval for the hazard ratio had to be below 1.125, and the one-sided P value had to be less than 0.025.
RESULTS: A total of 9535 patients underwent randomization. A composite bleeding outcome event occurred in 433 of 4757 patients (9.1%) in the tranexamic acid group and in 561 of 4778 patients (11.7%) in the placebo group (hazard ratio, 0.76; 95% confidence interval [CI], 0.67 to 0.87; absolute difference, -2.6 percentage points; 95% CI, -3.8 to -1.4; two-sided P<0.001 for superiority). A composite cardiovascular outcome event occurred in 649 of 4581 patients (14.2%) in the tranexamic acid group and in 639 of 4601 patients (13.9%) in the placebo group (hazard ratio, 1.02; 95% CI, 0.92 to 1.14; upper boundary of the one-sided 97.5% CI, 1.14; absolute difference, 0.3 percentage points; 95% CI, -1.1 to 1.7; one-sided P = 0.04 for noninferiority).
CONCLUSIONS: Among patients undergoing noncardiac surgery, the incidence of the composite bleeding outcome was significantly lower with tranexamic acid than with placebo. Although the between-group difference in the composite cardiovascular outcome was small, the noninferiority of tranexamic acid was not established. (Funded by the Canadian Institutes of Health Research and others; POISE-3 ClinicalTrials.gov number, NCT03505723.).
OBJECTIVE: To compare the effects of a hypotension-avoidance and a hypertension-avoidance strategy on major vascular complications after noncardiac surgery.
DESIGN: Partial factorial randomized trial of 2 perioperative blood pressure management strategies (reported here) and tranexamic acid versus placebo. (ClinicalTrials.gov: NCT03505723).
SETTING: 110 hospitals in 22 countries.
PATIENTS: 7490 patients having noncardiac surgery who were at risk for vascular complications and were receiving 1 or more long-term antihypertensive medications.
INTERVENTION: In the hypotension-avoidance strategy group, the intraoperative mean arterial pressure target was 80 mm Hg or greater; before and for 2 days after surgery, renin-angiotensin-aldosterone system inhibitors were withheld and the other long-term antihypertensive medications were administered only for systolic blood pressures 130 mm Hg or greater, following an algorithm. In the hypertension-avoidance strategy group, the intraoperative mean arterial pressure target was 60 mm Hg or greater; all antihypertensive medications were continued before and after surgery.
MEASUREMENTS: The primary outcome was a composite of vascular death and nonfatal myocardial injury after noncardiac surgery, stroke, and cardiac arrest at 30 days. Outcome adjudicators were masked to treatment assignment.
RESULTS: The primary outcome occurred in 520 of 3742 patients (13.9%) in the hypotension-avoidance group and in 524 of 3748 patients (14.0%) in the hypertension-avoidance group (hazard ratio, 0.99 [95% CI, 0.88 to 1.12]; P = 0.92). Results were consistent for patients who used 1 or more than 1 antihypertensive medication in the long term.
LIMITATION: Adherence to the assigned strategies was suboptimal; however, results were consistent across different adherence levels.
CONCLUSION: In patients having noncardiac surgery, our hypotension-avoidance and hypertension-avoidance strategies resulted in a similar incidence of major vascular complications.
PRIMARY FUNDING SOURCE: Canadian Institutes of Health Research, National Health and Medical Research Council (Australia), and Research Grant Council of Hong Kong.
METHODS: In this international, prospective cohort study of 15,065 patients aged 45 yr or older who underwent in-patient noncardiac surgery, troponin T was measured during the first 3 postoperative days. Patients with a troponin T level of 0.04 ng/ml or greater (elevated "abnormal" laboratory threshold) were assessed for ischemic features (i.e., ischemic symptoms and electrocardiography findings). Patients adjudicated as having a nonischemic troponin elevation (e.g., sepsis) were excluded. To establish diagnostic criteria for MINS, the authors used Cox regression analyses in which the dependent variable was 30-day mortality (260 deaths) and independent variables included preoperative variables, perioperative complications, and potential MINS diagnostic criteria.
RESULTS: An elevated troponin after noncardiac surgery, irrespective of the presence of an ischemic feature, independently predicted 30-day mortality. Therefore, the authors' diagnostic criterion for MINS was a peak troponin T level of 0.03 ng/ml or greater judged due to myocardial ischemia. MINS was an independent predictor of 30-day mortality (adjusted hazard ratio, 3.87; 95% CI, 2.96-5.08) and had the highest population-attributable risk (34.0%, 95% CI, 26.6-41.5) of the perioperative complications. Twelve hundred patients (8.0%) suffered MINS, and 58.2% of these patients would not have fulfilled the universal definition of myocardial infarction. Only 15.8% of patients with MINS experienced an ischemic symptom.
CONCLUSION: Among adults undergoing noncardiac surgery, MINS is common and associated with substantial mortality.