METHODS: We used data from an ongoing individual participant meta-analysis involving 17 population-based cohorts worldwide. We selected 60,211 participants without cardiovascular disease at baseline with available data on ethnicity (White, Black, Asian or Hispanic). We generated a multivariable linear regression model containing risk factors and ethnicity predicting mean common carotid intima-media thickness (CIMT) and a multivariable Cox regression model predicting myocardial infarction or stroke. For each risk factor we assessed how the association with the preclinical and clinical measures of cardiovascular atherosclerotic disease was affected by ethnicity.
RESULTS: Ethnicity appeared to significantly modify the associations between risk factors and CIMT and cardiovascular events. The association between age and CIMT was weaker in Blacks and Hispanics. Systolic blood pressure associated more strongly with CIMT in Asians. HDL cholesterol and smoking associated less with CIMT in Blacks. Furthermore, the association of age and total cholesterol levels with the occurrence of cardiovascular events differed between Blacks and Whites.
CONCLUSION: The magnitude of associations between risk factors and the presence of atherosclerotic disease differs between race/ethnic groups. These subtle, yet significant differences provide insight in the etiology of cardiovascular disease among race/ethnic groups. These insights aid the race/ethnic-specific implementation of primary prevention.
METHODS: Individual participant data from 14 cohorts, involving 59,025 individuals were used in this cross-sectional analysis. We made 15 clusters of four risk factors (current smoking, overweight, elevated blood pressure, elevated total cholesterol). Multilevel age and sex adjusted linear regression models were applied to estimate mean differences in common carotid intima-media thickness (CIMT) between clusters using those without any of the four risk factors as reference group.
RESULTS: Compared to the reference, those with 1, 2, 3 or 4 risk factors had a significantly higher common CIMT: mean difference of 0.026 mm, 0.052 mm, 0.074 mm and 0.114 mm, respectively. These findings were the same in men and in women, and across ethnic groups. Within each risk factor cluster (1, 2, 3 risk factors), groups with elevated blood pressure had the largest CIMT and those with elevated cholesterol the lowest CIMT, a pattern similar for men and women.
CONCLUSION: Clusters of risk factors relate to increased common CIMT in a graded manner, similar in men, women and across race-ethnic groups. Some clusters seemed more atherogenic than others. Our findings support the notion that cardiovascular prevention should focus on sets of risk factors rather than individual levels alone, but may prioritize within clusters.
METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.
RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.
CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.