Displaying all 2 publications

Abstract:
Sort:
  1. Iqbal MA, Bakhsh S, Maidin SS, Morsy K, Choi JR, Alguno AC
    Sci Rep, 2024 Jul 05;14(1):15510.
    PMID: 38969827 DOI: 10.1038/s41598-024-66378-2
    The optoelectronic and structural characteristics of the Zn1-xCrxSe (0 ≤ x ≤ 1) semiconductor are reported by employing density functional theory (DFT) within the mBJ potential. The findings revealed that the lattice constant decreases with increasing Cr concentration, although the bulk modulus exhibits the opposite trend. ZnSe is a direct bandgap material; however, a change from direct to indirect electronic bandgap has been seen with Cr presence. This transition is caused by structural alterations by Cr and defects forming, which results in novel optical features, including electronic transitions. The electronic bandgap decreases from 2.769 to 0.216 eV, allowing phonons to participate and improving optical absorption. A higher concentration of Cr boosts infrared absorption and these Cr-based ZnSe (ZnCrSe) semiconductors also cover a wider spectrum in the visible range from red to blue light. Important optical parameters such as reflectance, optical conductivity, optical bandgap, extinction coefficient, refractive index, magnetization factor, and energy loss function are discussed, providing a theoretical understanding of the diverse applications of ZnCrSe semiconductors in photonic and optoelectronic devices.
  2. Nowsherwan GA, Iqbal MA, Rehman SU, Zaib A, Sadiq MI, Dogar MA, et al.
    Sci Rep, 2023 Jun 27;13(1):10431.
    PMID: 37369767 DOI: 10.1038/s41598-023-37486-2
    The increase in global energy consumption and the related ecological problems have generated a constant demand for alternative energy sources superior to traditional ones. This is why unlimited photon-energy harnessing is important. A notable focus to address this concern is on advancing and producing cost-effective low-loss solar cells. For efficient light energy capture and conversion, we fabricated a ZnPC:PC70BM-based dye-sensitized solar cell (DSSC) and estimated its performance using a solar cell capacitance simulator (SCAPS-1D). We evaluated the output parameters of the ZnPC:PC70BM-based DSSC with different photoactive layer thicknesses, series and shunt resistances, and back-metal work function. Our analyses show that moderate thickness, minimum series resistance, high shunt resistance, and high metal-work function are favorable for better device performance due to low recombination losses, electrical losses, and better transport of charge carriers. In addition, in-depth research for clarifying the impact of factors, such as thickness variation, defect density, and doping density of charge transport layers, has been conducted. The best efficiency value found was 10.30% after tweaking the parameters. It also provides a realistic strategy for efficiently utilizing DSSC cells by altering features that are highly dependent on DSSC performance and output.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links