Affiliations 

  • 1 School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China. [email protected]
  • 2 Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
  • 3 Faculty of Data Science and Information Technology, INTI International University, 71800, Nilai, Malaysia
  • 4 Biology Department, College of Science, King Khalid University, 61421, Abha, Saudi Arabia
  • 5 School of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do, 16227, Republic of Korea. [email protected]
  • 6 Department of Physics, MSU-Iligan Institute of Technology, 9200, Iligan City, Philippines
Sci Rep, 2024 Jul 05;14(1):15510.
PMID: 38969827 DOI: 10.1038/s41598-024-66378-2

Abstract

The optoelectronic and structural characteristics of the Zn1-xCrxSe (0 ≤ x ≤ 1) semiconductor are reported by employing density functional theory (DFT) within the mBJ potential. The findings revealed that the lattice constant decreases with increasing Cr concentration, although the bulk modulus exhibits the opposite trend. ZnSe is a direct bandgap material; however, a change from direct to indirect electronic bandgap has been seen with Cr presence. This transition is caused by structural alterations by Cr and defects forming, which results in novel optical features, including electronic transitions. The electronic bandgap decreases from 2.769 to 0.216 eV, allowing phonons to participate and improving optical absorption. A higher concentration of Cr boosts infrared absorption and these Cr-based ZnSe (ZnCrSe) semiconductors also cover a wider spectrum in the visible range from red to blue light. Important optical parameters such as reflectance, optical conductivity, optical bandgap, extinction coefficient, refractive index, magnetization factor, and energy loss function are discussed, providing a theoretical understanding of the diverse applications of ZnCrSe semiconductors in photonic and optoelectronic devices.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.