Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Din ARJ, Othman NZ
    Data Brief, 2023 Jun;48:109204.
    PMID: 37383771 DOI: 10.1016/j.dib.2023.109204
    Burkholderia sp. IMCC1007 is a gram-negative, aerobic bacterium affiliated with class Betaproteobacteria, which was successfully isolated from maize rhizospheric soil sample in UTM research plot, Pagoh, Malaysia by using enrichment method. Strain IMCC1007 utilized 50 mgL-1 fusaric acid as its carbon source and degraded it completely within 14 h. Genome sequencing was performed using Illumina NovaSeq platform. The assembled genome was annotated using RAST (Rapid Annotation Subsystem Technology) server. The genome size was approximately 8,568,405 base pairs (bp) in 147 contigs with a G+C content of 66.04%. The genome includes 8,733 coding sequences and 68 RNAs. The genome sequence has been deposited at GenBank with the accession number of JAPVQY000000000. In the pairwise genome-to-genome comparisons, the strain IMCC1007 had an average nucleotide identity (ANI) of 91.9% and digital DNA-DNA hybridization (dDDH) value of 55.2% with Burkholderia anthina DSM 16086T respectively. Interestingly, fusaric acid resistance gene (fusC) and nicABCDFXT gene clusters (hydroxylation of pyridine compound) were found in the genome. Additionally, preliminary genome annotation analysis of strain IMCC1007 identified tryptophan halogenase (prnA) gene responsible for antifungal pyrrolnitrin biosynthesis. This dataset herein provides further insights into the fusaric acid degradation mechanism of the genus Burkholderia.
  2. Mohd Din ARJ, Shadan NH, Rosli MA, Musa NF, Othman NZ
    World J Microbiol Biotechnol, 2023 Feb 16;39(4):101.
    PMID: 36792836 DOI: 10.1007/s11274-023-03544-0
    Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16 S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h- 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L- 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30 °C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links