Method: We searched MEDLINE, EMBASE, CENTRAL and clinical trial registers for studies using search strategies incorporating the terms 'intracerebral haemorrhage', 'tranexamic acid' and 'antifibrinolytic'. Authors of ongoing clinical trials were contacted for further details.
Findings: We screened 268 publications and retrieved 17 articles after screening. Unpublished information from three ongoing clinical trials was obtained. We found five completed studies. Of these, two randomised controlled trials (RCTs) comparing intravenous tranexamic acid to placebo (n = 54) reported no significant difference in death or dependency. Three observational studies (n = 281) suggested less haematoma growth with rapid tranexamic acid infusion. There are six ongoing RCTs (n = 3089) with different clinical exclusions, imaging selection criteria (spot sign and haematoma volume), time window for recruitment and dosing of tranexamic acid.
Discussion: Despite their heterogeneity, the ongoing trials will provide key evidence on the effects of tranexamic acid on ICH. There are uncertainties of whether patients with negative spot sign, large haematoma, intraventricular haemorrhage, or poor Glasgow Coma Scale should be recruited. The time window for optimal effect of haemostatic therapy in ICH is yet to be established.
Conclusion: Tranexamic acid is a promising haemostatic agent for ICH. We await the results of the trials before definite conclusions can be drawn.
METHODS: We conducted a systematic review and individual patient meta-analysis, which we report according to the Preferred Reporting Items for Systematic Review and Meta-analyses of Individual Participant Data guidelines. PubMed and Embase were searched from inception to May 29, 2023, using the terms ((stroke) AND (randomised OR randomized) AND (tranexamic acid) AND (haemorrhage OR hemorrhage)). We included randomized trials comparing tranexamic acid with placebo in participants with primary intracerebral hemorrhage who had a spot sign and who had follow-up imaging within the required timeframe. Individual patient data were provided by each study and were integrated by the coordinating center. Data were pooled using a random-effects model. The primary endpoint was hematoma growth within 24 hours, defined as ≥33% relative or ≥6 mL absolute hematoma expansion compared with baseline, analyzed using mixed-effects-modified Poisson regression with robust standard errors, adjusted for baseline hematoma volume. Safety outcomes were mortality and major thromboembolic events within 90 days.
RESULTS: Of 197 studies identified, 3 were eligible, contributing 162 participants for the primary analysis (60 female and 102 male). Hematoma growth occurred in 36 of 74 (49%) participants treated with tranexamic acid, compared with 48 of 88 (55%) participants treated with placebo (adjusted risk ratio 0.86, 95% CI 0.84-0.89, p < 0.001). Adjusted median absolute hematoma growth was 1.60 mL (95% CI 0.77-2.43) lower with tranexamic acid vs placebo. No differences in functional outcome or safety were observed.
DISCUSSION: Tranexamic acid modestly reduced hematoma growth in patients with CT angiography spot signs treated within 4.5 hours of onset. Given the trials in the meta-analysis were individually neutral, these results require further validation before clinical application.
OBJECTIVES: The GBD (Global Burden of Disease) 2015 study integrated data on disease incidence, prevalence, and mortality to produce consistent, up-to-date estimates for cardiovascular burden.
METHODS: CVD mortality was estimated from vital registration and verbal autopsy data. CVD prevalence was estimated using modeling software and data from health surveys, prospective cohorts, health system administrative data, and registries. Years lived with disability (YLD) were estimated by multiplying prevalence by disability weights. Years of life lost (YLL) were estimated by multiplying age-specific CVD deaths by a reference life expectancy. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility.
RESULTS: In 2015, there were an estimated 422.7 million cases of CVD (95% uncertainty interval: 415.53 to 427.87 million cases) and 17.92 million CVD deaths (95% uncertainty interval: 17.59 to 18.28 million CVD deaths). Declines in the age-standardized CVD death rate occurred between 1990 and 2015 in all high-income and some middle-income countries. Ischemic heart disease was the leading cause of CVD health lost globally, as well as in each world region, followed by stroke. As SDI increased beyond 0.25, the highest CVD mortality shifted from women to men. CVD mortality decreased sharply for both sexes in countries with an SDI >0.75.
CONCLUSIONS: CVDs remain a major cause of health loss for all regions of the world. Sociodemographic change over the past 25 years has been associated with dramatic declines in CVD in regions with very high SDI, but only a gradual decrease or no change in most regions. Future updates of the GBD study can be used to guide policymakers who are focused on reducing the overall burden of noncommunicable disease and achieving specific global health targets for CVD.
METHODS: We generated updated estimates of child mortality in early neonatal (age 0-6 days), late neonatal (7-28 days), postneonatal (29-364 days), childhood (1-4 years), and under-5 (0-4 years) age groups for 188 countries from 1970 to 2013, with more than 29,000 survey, census, vital registration, and sample registration datapoints. We used Gaussian process regression with adjustments for bias and non-sampling error to synthesise the data for under-5 mortality for each country, and a separate model to estimate mortality for more detailed age groups. We used explanatory mixed effects regression models to assess the association between under-5 mortality and income per person, maternal education, HIV child death rates, secular shifts, and other factors. To quantify the contribution of these different factors and birth numbers to the change in numbers of deaths in under-5 age groups from 1990 to 2013, we used Shapley decomposition. We used estimated rates of change between 2000 and 2013 to construct under-5 mortality rate scenarios out to 2030.
FINDINGS: We estimated that 6·3 million (95% UI 6·0-6·6) children under-5 died in 2013, a 64% reduction from 17·6 million (17·1-18·1) in 1970. In 2013, child mortality rates ranged from 152·5 per 1000 livebirths (130·6-177·4) in Guinea-Bissau to 2·3 (1·8-2·9) per 1000 in Singapore. The annualised rates of change from 1990 to 2013 ranged from -6·8% to 0·1%. 99 of 188 countries, including 43 of 48 countries in sub-Saharan Africa, had faster decreases in child mortality during 2000-13 than during 1990-2000. In 2013, neonatal deaths accounted for 41·6% of under-5 deaths compared with 37·4% in 1990. Compared with 1990, in 2013, rising numbers of births, especially in sub-Saharan Africa, led to 1·4 million more child deaths, and rising income per person and maternal education led to 0·9 million and 2·2 million fewer deaths, respectively. Changes in secular trends led to 4·2 million fewer deaths. Unexplained factors accounted for only -1% of the change in child deaths. In 30 developing countries, decreases since 2000 have been faster than predicted attributable to income, education, and secular shift alone.
INTERPRETATION: Only 27 developing countries are expected to achieve MDG 4. Decreases since 2000 in under-5 mortality rates are accelerating in many developing countries, especially in sub-Saharan Africa. The Millennium Declaration and increased development assistance for health might have been a factor in faster decreases in some developing countries. Without further accelerated progress, many countries in west and central Africa will still have high levels of under-5 mortality in 2030.
FUNDING: Bill & Melinda Gates Foundation, US Agency for International Development.
METHODS: Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate.
RESULTS: For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced.
CONCLUSIONS: The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.
METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.
RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.
CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).
FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).
INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.