Displaying all 9 publications

Abstract:
Sort:
  1. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
  2. Al-Haddad AY, Kutty MG, Che Ab Aziz ZA
    Int J Biomater, 2018;2018:1731857.
    PMID: 30154852 DOI: 10.1155/2018/1731857
    Objectives: To evaluate the push-out bond strength of experimental apatite calcium phosphate coated gutta-percha (HAGP) compared to different commercially available coated gutta-percha root obturation points.

    Methods: Extracted teeth were selected and instrumented using ProTaper rotary files. The canals were assigned into five equal groups and obturated using matching single cone technique as follows: EndoREZ cones and EndoREZ sealer, Bioceramic Endosequence gutta-percha (BCGP) with Endosequence BC sealer, Active GP with Endosequence BC sealer (ActiV GP), conventional GP with Endosequence BC sealer, and HAGP with Endosequence BC sealer. Each root was sectioned transversally at the thickness of 1±0.1 mm to obtain 5 sections (n=25 per group). The specimens were subjected to push-out test using a Universal Test Machine at a loading speed of 0.5 mm/ min. Failure modes after push-out test was examined under stereomicroscope and the push-out data were analyzed using ANOVA and the post hoc Dunnett T3 test (p = 0.05).

    Results: The highest mean bond strength was yielded by HAGP followed by BCGP, ActiV GP, conventional GP, and EndoREZ. There were significant differences between EndoREZ and all other groups (p<0.001). The prominent failure mode of HAGP was mixed mode, whereas EndoREZ exhibited adhesive failure mode. Conventional GP, ActiV GP, and BCGP showed cohesive failure mode.

    Conclusion: HAGP showed promising results to be used as root canal filling material in combination with bioceramic sealer.

  3. Alarwali AM, Kutty MG, Al-Haddad AY, Gonzalez MAG
    Am J Dent, 2018 Feb;31(1):39-44.
    PMID: 29630804
    PURPOSE: To evaluate the fracture resistance and failure mode of three different all-ceramic crowns; CEREC Bloc, IPS e.Max Press and Cercon in a simulated clinical situation.

    METHODS: 30 extracted maxillary premolars were prepared and randomly assigned to three groups equally according to the type of crown used. The first was the CEREC group: monolithic feldspathic crowns (CEREC Blocs). The second was the E.Max group: monolithic lithium disilicate crowns (IPS e.Max Press). The third group was the Cercon group: bilayered partially stabilized zirconia crowns (Cercon). All crowns were cemented using dual-cured resin cement (ParaCore). The specimens were then subjected to thermocycling (5-55°C/500 cycles) and loaded to failure at an angle of 45° to the occlusal surface of the crown. Failure data was statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test at α= 0.05. Fractographic analysis was performed to determine the fracture modes of the failed specimens.

    RESULTS: The mean fracture values for CEREC, E.Max and Cercon groups were 387± 60 N, 452 ± 86 N, and 540 ± 171 N, respectively. Significant differences were found between CEREC and Cercon groups (P< 0.05). Catastrophic fracture within the ceramic crown was the major failure mode of the CEREC group. For E.Max and Cercon groups, the major failure mode was exhibiting severe tooth fracture while the ceramic crown remained intact.

    CLINICAL SIGNIFICANCE: CEREC, IPS e.Max Press and Cercon crowns are clinically applicable as they exceeded the normal masticatory forces. However, the CEREC crown is preferred as it maintains the integrity of the natural abutment.

  4. Al-Haddad AY, Kutty MG, Abu Kasim NH, Che Ab Aziz ZA
    J Dent Sci, 2017 Dec;12(4):340-346.
    PMID: 30895073 DOI: 10.1016/j.jds.2017.03.008
    Background/purpose: Intraradicular moisture is not standardized and alters the sealing properties and adhesion of root sealers. The aim of this work was to evaluate the effect of different moisture on the constitution of bioceramic sealers.

    Materials and methods: The sealers were evaluated before mixing, and after setting using X-ray diffraction (XRD), Energy Dispersive Analysis (EDX) and Scanning Electron Microscope (SEM) techniques. Twenty four extracted teeth were prepared and assigned to four groups according to the moisture conditions: (1) dry: using ethanol as final irrigation, (2) normal: using paper points until the last one appeared dry, (3) moist: using a Luer adapter for 5 s followed by 1 paper point, and (4) wet: the canals remained totally flooded. The roots were filled with MTA Fillapex® and Endosequence® BC and kept in phosphate buffer solution at 37 °C for 10 days. Each root was sectioned transversally and longitudinally. The sealers harvested from longitudinal sections were analysed using XRD. Whilst the transverse sections were analysed using SEM/EDX.

    Results: The XRD analysis showed MTA Fillapex composed of Bismuth trioxide, calcium silicate and tricalcium aluminate. The intensity of peaks in the wet condition was reduced. Endosequence BC contained mainly calcium silicate, calcium silicate hydrate, zirconia and calcium hydroxide. The wet condition showed a small increase in hydrated calcium silicate. The EDX analysis showed changes in the elemental concentrations with different moisture conditions. The surface morphology differed with different moisture conditions.

    Conclusion: Tested sealers have different constitution that not affected by the degree of moisture. However, it changed their relative quantity.

  5. Al-Namnam NM, Kutty MG, Chai WL, Ha KO, Kim KH, Siar CH, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Mar 01;72:332-340.
    PMID: 28024594 DOI: 10.1016/j.msec.2016.11.086
    Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use.
  6. Chen YZ, Yong MJ, Tan VY, Kong SLS, Elnawawy HMA, Yahya NA, et al.
    Eur Endod J, 2023 May;8(3):215-224.
    PMID: 37257037 DOI: 10.14744/eej.2023.36449
    OBJECTIVE: This study compared the effects of calcium chloride dihydrate (CaCl2.2H2O) on the physical properties and push-out bond strength of white Mineral Trioxide Aggregate (WMTA) and an experimental Malaysian Portland cement mixed with nano-zirconium oxide (nano-ZrO) [(radiopaque Malaysian Portland cement (RMPC). Mineral Trioxide Aggregate (MTA) was the first calcium silicate cement (CSC) introduced in dentistry, but up to date, it is an expensive cement with long setting time and causes tooth discolouration. Although Portland cement has been introduced as a potential substitute to MTA, it still faces some challenges such as long setting time and lack of sufficient radiopacity.

    METHODS: Four groups [WMTA, RMPC, fast-set WMTA (FS-WMTA) and fast-set RMPC (FS-RMPC)] were prepared. Initial setting time was evaluated using Vicat apparatus. The pH was measured at seven-day intervals. For discolouration potential, cements were packed in the pulp chamber of 46 extracted maxillary incisors. Spectrophotometric readings were obtained at seven-day intervals, and the rate of colour change (ΔE) was recorded. For the push-out bond strength testing, cements were applied in 48 sectioned root samples, and the test was performed using universal testing machine at crosshead speed of 0.5 mm/min until bond failure. Statistical analysis was done according to the nature of each group of data using SPSS 26.

    RESULTS: Addition of CaCl2.2H2O decreased the initial setting times of both RMPC and WMTA significantly (p<0.05). The pH values of FS-WMTA and FS-RMPC were comparable to their non-accelerated counterparts ranging from 10 to 12. Discolouration effect was more obviously observed with WMTA and FS-WMTA with time compared to RMPC formulations. Push-out bond strength of the two materials also showed an increase with the addition of the accelerator, however, only FS-WMTA showed statistically significant difference compared to WMTA (p<0.05).

    CONCLUSION: The addition of CaCl2.2H2O improves the physical and mechanical properties of the newly formulated RMPC and WMTA. The RMPC formulation overcomes the discolouration potential of WMTA. (EEJ-2022-12-155).

  7. Elnawawy HM, Kutty MG, Yahya NA, Kasim NHA, Cooper PR, Camilleri J, et al.
    Dent Mater J, 2024 Sep 10.
    PMID: 39261022 DOI: 10.4012/dmj.2024-015
    This study compared the chemical and physical properties of an experimental radiopaque white Portland cement (REPC) with reduced particle size to ProRoot white mineral trioxide aggregate (WMTA). The particle size distribution of experimental Portland cement (EPC) was examined, and then nano-zirconium oxide (nano-ZrO) was added to produce REPC. Chemical analysis, initial setting time, pH values, and push-out bond strength were evaluated. Results showed that REPC had smallest particle size (354.5±26.45 nm), while PC had the largest (1,309.67±60.54 nm) (p<0.05). Differences in chemical composition were observed. REPC exhibited shorter setting time (32.7±0.58 min) compared to WMTA (131.67±2.89 min) and PC (163.33±2.89 min) (p<0.05). All groups showed alkaline pH (p<0.05). REPC demonstrated the highest push-out bond strength (22.24±4.33 MPa) compared with WMTA (15.53±3.26 MPa) and PC (16.8±5.43 MPa) (p<0.05). This cost-effective PC formulation reduced the setting time and increased the push-out bond strength while maintaining the alkaline properties of the original cements.
  8. Majeed R, Elnawawy HM, Kutty MG, Yahya NA, Azami NH, Abu Kasim NH, et al.
    Odontology, 2023 Oct;111(4):759-776.
    PMID: 36864211 DOI: 10.1007/s10266-023-00786-0
    This systematic review evaluated the effects of nano-sized cement particles on the properties of calcium silicate-based cements (CSCs). Using defined keywords, a literature search was conducted to identify studies that investigated properties of nano-calcium silicate-based cements (NCSCs). A total of 17 studies fulfilled the inclusion criteria. Results indicated that NCSC formulations have favourable physical (setting time, pH and solubility), mechanical (push out bond strength, compressive strength and indentation hardness) and biological (bone regeneration and foreign body reaction) properties compared with commonly used CSCs. However, the characterization and verification for the nano-particle size of NCSCs were deficient in some studies. Furthermore, the nanosizing was not limited to the cement particles and a number of additives were present. In conclusion, the evidence available for the properties of CSC particles in the nano-range is deficient-such properties could be a result of additives which may have enhanced the properties of the material.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links