Displaying 1 publication

Abstract:
Sort:
  1. Kiew LV, Chang CY, Huang SY, Wang PW, Heh CH, Liu CT, et al.
    Biosens Bioelectron, 2021 Jul 01;183:113213.
    PMID: 33857754 DOI: 10.1016/j.bios.2021.113213
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of its spike protein (S-protein) to the cell surface-expressing angiotensin-converting enzyme 2 (ACE2). Thus, inhibition of S-protein-ACE2 binding may impede SARS-CoV-2 cell entry and attenuate the progression of Coronavirus disease 2019 (COVID-19). In this study, an electrochemical impedance spectroscopy-based biosensing platform consisting of a recombinant ACE2-coated palladium nano-thin-film electrode as the core sensing element was fabricated for the screening of potential inhibitors against S-protein-ACE2 binding. The platform could detect interference of small analytes against S-protein-ACE2 binding at low analyte concentration and small volume (0.1 μg/mL and ~1 μL, estimated total analyte consumption 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links