METHODS: Plasma and serum samples were collected from adults participating in four independent studies at different time points, ranging from several days up to 14 months post-SARS-CoV-2 infection. The primary outcome measure was to quantify SARS-CoV-2 antigens, including the S1 subunit of spike, full-length spike, and nucleocapsid, in participant samples. The presence of 34 commonly reported PASC symptoms during the postacute period was determined from participant surveys or chart reviews of electronic health records.
RESULTS: Of the 1569 samples analysed from 706 individuals infected with SARS-CoV-2, 21% (95% CI, 18-24%) were positive for either S1, spike, or nucleocapsid. Spike was predominantly detected, and the highest proportion of samples was spike positive (20%; 95% CI, 18-22%) between 4 and 7 months postinfection. In total, 578 participants (82%) reported at least one of the 34 PASC symptoms included in our analysis ≥1 month postinfection. Cardiopulmonary, musculoskeletal, and neurologic symptoms had the highest reported prevalence in over half of all participants, and among those participants, 43% (95% CI, 40-45%) on average were antigen-positive. Among the participants who reported no ongoing symptoms (128, 18%), antigen was detected in 28 participants (21%). The presence of antigen was associated with the presence of one or more PASC symptoms, adjusting for sex, age, time postinfection, and cohort (OR, 1.8; 95% CI, 1.4-2.2).
DISCUSSION: The findings of this multicohort study indicate that SARS-CoV-2 antigens can be detected in the blood of a substantial proportion of individuals up to 14 months after infection. While approximately one in five asymptomatic individuals was antigen-positive, roughly half of all individuals reporting ongoing cardiopulmonary, musculoskeletal, and neurologic symptoms were antigen-positive.
OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC.
DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024).
SETTING: 83 enrolling sites.
PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection.
MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests.
RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero.
LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined.
CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC.
PRIMARY FUNDING SOURCE: National Institutes of Health.