Displaying all 15 publications

Abstract:
Sort:
  1. How KY, Hong KW, Chan KG
    PeerJ, 2015;3:e1117.
    PMID: 26290785 DOI: 10.7717/peerj.1117
    Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.
  2. How KY, Song KP, Chan KG
    Front Microbiol, 2016;7:53.
    PMID: 26903954 DOI: 10.3389/fmicb.2016.00053
    Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
  3. Lau YY, How KY, Yin WF, Chan KG
    PeerJ, 2020;8:e10068.
    PMID: 33150063 DOI: 10.7717/peerj.10068
    Over the past decades, Enterobacter spp. have been identified as challenging and important pathogens. The emergence of multidrug-resistant Enterobacteria especially those that produce Klebsiella pneumoniae carbapenemase has been a very worrying health crisis. Although efforts have been made to unravel the complex mechanisms that contribute to the pathogenicity of different Enterobacter spp., there is very little information associated with AHL-type QS mechanism in Enterobacter spp. Signaling via N-acyl homoserine lactone (AHL) is the most common quorum sensing (QS) mechanism utilized by Proteobacteria. A typical AHL-based QS system involves two key players: a luxI gene homolog to synthesize AHLs and a luxR gene homolog, an AHL-dependent transcriptional regulator. These signaling molecules enable inter-species and intra-species interaction in response to external stimuli according to population density. In our recent study, we reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. Whole genome sequencing and in silico analysis revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easI/R, in strain L1. In a QS system, a LuxR transcriptional protein detects and responds to the concentration of a specific AHL controlling gene expression. In E. asburiae strain L1, EasR protein binds to its cognate AHLs, N-butanoyl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL), modulating the expression of targeted genes. In this current work, we have cloned the 693 bp luxR homolog of strain L1 for further characterization. The functionality and specificity of EasR protein in response to different AHL signaling molecules to activate gene transcription were tested and validated with β-galactosidase assays. Higher β-galactosidase activities were detected for cells harboring EasR, indicating EasR is a functional transcriptional regulator. This is the first report documenting the cloning and characterization of transcriptional regulator, luxR homolog of E. asburiae.
  4. Ng CK, How KY, Tee KK, Chan KG
    Genes (Basel), 2019 04 08;10(4).
    PMID: 30965610 DOI: 10.3390/genes10040282
    Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
  5. Chong YM, How KY, Yin WF, Chan KG
    Molecules, 2018 04 21;23(4).
    PMID: 29690523 DOI: 10.3390/molecules23040972
    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P.aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts also inhibited violacein production in C.violaceum CV026 up to 50% while bioluminescence activities were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.
  6. Mohamad NI, How KY, Yin WF, Chan KG
    J Genomics, 2017;5:48-50.
    PMID: 28348643 DOI: 10.7150/jgen.16163
    A large number of Vibrio sp. thrive in the marine environment and they are notable to cause food borne infection associated with undercooked seafood. In this study, we report the whole genome sequence of Vibrio sinaloensis T47 which was isolated from coastal marine water in Morib Beach, Hulu Selangor. The genome is made up of approximately 4.59 Mbp with 80 contigs and 46% G+C content. From the annotated genome, genes associated with quorum sensing (QS) were identified. This research provides a genetic basis for better understanding of QS pathway which contributes to the physiological traits of strain T47 to thrive in the marine environment.
  7. Lau YY, How KY, Yin WF, Chan KG
    Microbiologyopen, 2018 Dec;7(6):e00610.
    PMID: 29982994 DOI: 10.1002/mbo3.610
    In gram-negative bacteria, bacterial communication or quorum sensing (QS) is achieved using common signaling molecules known as N-acyl homoserine lactones (AHL). We have previously reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. In silico analysis of the strain L1 genome revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easIR. In this work, the 639 bp luxI homolog, encoding 212 amino acids, have been cloned and overexpressed in Escherichia coli BL21 (DE3)pLysS. The purified protein (~25 kDa) shares high similarity to several members of the LuxI family among different E asburiae strains. Our findings showed that the heterologously expressed EasI protein has activated violacein production by AHL biosensor Chromobacterium violaceum CV026 as the wild-type E. asburiae. The mass spectrometry analysis showed the production of N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone from induced E. coli harboring the recombinant EasI, suggesting that EasI is a functional AHL synthase. E. asburiae strain L1 was also shown to possess biofilm-forming characteristic activity using crystal violet binding assay. This is the first report on cloning and characterization of the luxI homolog from E. asburiae.
  8. Chan XY, Chua KO, How KY, Yin WF, Chan KG
    ScientificWorldJournal, 2014;2014:930727.
    PMID: 25436236 DOI: 10.1155/2014/930727
    Most Pseudomonas putida strains are environmental microorganisms exhibiting a wide range of metabolic capability but certain strains have been reported as rare opportunistic pathogens and some emerged as multidrug resistant P. putida. This study aimed to assess the drug resistance profile of, via whole genome analysis, P. putida strain T2-2 isolated from oral cavity. At the same time, we also compared the nonenvironmental strain with environmentally isolated P. putida. In silico comparative genome analysis with available reference strains of P. putida shows that T2-2 has lesser gene counts on carbohydrate and aromatic compounds metabolisms, which suggested its little versatility. The detection of its edd gene also suggested T2-2's catabolism of glucose via ED pathway instead of EMP pathway. On the other hand, its drug resistance profile was observed via in silico gene prediction and most of the genes found were in agreement with drug-susceptibility testing in laboratory by automated VITEK 2. In addition, the finding of putative genes of multidrug resistance efflux pump and ATP-binding cassette transporters in this strain suggests a multidrug resistant phenotype. In summary, it is believed that multiple metabolic characteristics and drug resistance in P. putida strain T2-2 helped in its survival in human oral cavity.
  9. How KY, Hong KW, Sam CK, Koh CL, Yin WF, Chan KG
    Front Microbiol, 2015;6:240.
    PMID: 25926817 DOI: 10.3389/fmicb.2015.00240
    Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium.
  10. Priya K, Sulaiman J, How KY, Yin WF, Chan KG
    Arch Microbiol, 2018 Sep;200(7):1135-1142.
    PMID: 29796703 DOI: 10.1007/s00203-018-1526-y
    Quorum sensing (QS) is a term used to describe cell-to-cell communication that enables bacteria to orchestrate group behaviours according to density of bacterial cells. In Gram-negative bacteria, this signalling system is widely known to regulate a variety of different phenotypes such as antibiotic production and biofilm formation. In this study, we report the production of N-acyl homoserine lactones produced by Chromobacterium haemolyticum strain KM2, a bacterium isolated from a river water of a reserved tropical national park. Preliminary screening of QS activity using biosensor reporter assays indicated that C. haemolyticum strain KM2 produces both short- and long-chain AHLs. Analysis with high-resolution liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed the production of three AHLs by strain KM2: N-octanoyl-L-homoserine lactone (C8-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), and N-3-oxo-dodecanoyl-L-homoserine lactone (OC12-HSL). This bacterial isolate also exhibited strong β-haemolytic activity. To the best of our knowledge, this is the first documentation of QS activity and multiple AHLs production by C. haemolyticum strain KM2.
  11. Tan KH, How KY, Tan JY, Yin WF, Chan KG
    Front Microbiol, 2017;8:72.
    PMID: 28197135 DOI: 10.3389/fmicb.2017.00072
    The process of intercellular communication among bacteria, termed quorum sensing (QS), is mediated by small diffusible molecules known as the autoinducers. QS allows the population to react to the change of cell density in unison, in processes such as biofilm formation, plasmid conjugation, virulence, motility and root nodulation. In Gram-negative proteobacteria, N-acyl homoserine lactone (AHL) is the common "language" to coordinate gene expression. This signaling molecule is usually synthesized by LuxI-type proteins. We have previously discovered that a rare bacterium, Cedecea neteri, exhibits AHL-type QS activity. With information generated from genome sequencing, we have identified the luxIR gene pair responsible for AHL-type QS and named it cneIR. In this study, we have cloned and expressed the 636 bp luxI homolog in an Escherichia coli host for further characterization. Our findings show that E. coli harboring cneI produced the same AHL profile as the wild type C. neteri, with the synthesis of AHL known as N-butyryl-homoserine lactone. This 25 kDa LuxI homolog shares high similarity with other AHL synthases from closely related species. This work is the first documentation of molecular cloning and characterization of luxI homolog from C. neteri.
  12. Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, et al.
    PeerJ, 2015;3:e1225.
    PMID: 26336650 DOI: 10.7717/peerj.1225
    In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
  13. Yong D, Ee R, Lim YL, Yu CY, Ang GY, How KY, et al.
    J Biotechnol, 2016 Jan 10;217:51-2.
    PMID: 26603120 DOI: 10.1016/j.jbiotec.2015.11.009
    Pandoraea thiooxydans DSM 25325(T) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of a sesame plant. Here, we present the first complete genome of P. thiooxydans DSM 25325(T). Several genes involved in thiosulfate oxidation and biodegradation of aromatic compounds were identified.
  14. Kher HL, Krishnan T, Letchumanan V, Hong KW, How KY, Lee LH, et al.
    Gene, 2019 Feb 05;684:58-69.
    PMID: 30321658 DOI: 10.1016/j.gene.2018.10.031
    In the phylum of Proteobacteria, quorum sensing (QS) system is widely driven by synthesis and response of N-acyl homoserine lactone (AHL) signalling molecules. AHL is synthesized by LuxI homologue and sensed by LuxR homologue. Once the AHL concentration achieves a threshold level, it triggers the regulation of target genes. In this study, QS activity of Citrobacter amalonaticus strain YG6 which was isolated from clams was investigated. In order to characterise luxI/R homologues, the genome of C. amalonaticus strain YG6 (4.95 Mbp in size) was sequenced using Illumina MiSeq sequencer. Through in silico analysis, a pair of canonical luxI/R homologues and an orphan luxR homologue were identified and designated as camI, camR, and camR2, respectively. A putative lux box was identified at the upstream of camI. The camI gene was cloned and overexpressed in E. coli BL21 (DE3)pLysS. High-resolution triple quadrupole liquid chromatography mass spectrometry (LC-MS/MS) analysis verified that the CamI is a functional AHL synthase which produced multiple AHL species, namely N‑butyryl‑l‑homoserine lactone (C4-HSL), N‑hexanoyl‑l‑homoserine lactone (C6-HSL), N‑octanoyl‑l‑homoserine lactone (C8-HSL), N‑tetradecanoyl‑l‑homoserine lactone (C14-HSL) and N‑hexadecanoyl‑l‑homoserine lactone (C16-HSL) in C. amalonaticus strain YG6 and camI gene in recombinant E. coli BL21(DE3)pLysS. To our best knowledge, this is the first functional study report of camI as well as the first report describing the production of C14-HSL by C. amalonaticus.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links