Displaying all 12 publications

Abstract:
Sort:
  1. Harikrishnan H, Ismail A, Banga Singh KK
    Gut Pathog, 2013;5(1):38.
    PMID: 24330657 DOI: 10.1186/1757-4749-5-38
    Bacteria exist widely in a diversity of natural environments. In order to survive adverse conditions such as nutrient depletion, biochemical and biological disturbances, and high temperature, bacteria have developed a wide variety of coping mechanisms. Temperature is one of the most important factors that can enhance the expression of microbial proteins. This study was conducted to investigate how outer membrane proteins (OMPs) of the bacterium Shigella flexneri respond to stress, especially during fever when the host's body temperature is elevated.
  2. Haque MA, Jantan I, Harikrishnan H
    Int Immunopharmacol, 2018 Feb;55:312-322.
    PMID: 29310107 DOI: 10.1016/j.intimp.2018.01.001
    Zerumbone (ZER), isolated mainly from the Zingiber zerumbet (Z. zerumbet) rhizomes was found to be effective against numerous inflammatory and immune disorders, however, the molecular and biochemical mechanisms underlying its anti-inflammatory and immunosuppressive properties have not been well studied. This study was carried out to examine the profound effects of ZER on inflammatory mediated MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways in LPS-stimulated U937 human macrophages. ZER significantly suppressed the up-regulation pro-inflammatory mediators, TNF-α, IL-1β, PGE2, and COX-2 protein in LPS-induced human macrophages. Moreover, ZER significantly downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β as well as restored the degradation of IκBα. ZER correspondingly showed remarkable attenuation of the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a concentration-dependent manner. ZER also diminished the expression of upstream signaling molecules TLR4 and MyD88, which are prerequisite for the NF-κB, MAPK and PI3K-Akt activation. Additionally, quantification of relative gene expression of TNF-α, IL-1β, and COX-2 indicated that, at a higher dose (50μM), ZER significantly downregulated the elevated mRNA transcription levels of the stated pro-inflammatory markers in LPS-stimulated U937 macrophages. The strong suppressive effects of ZER on the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways suggest that ZER can be a preventive and potent therapeutic candidate for the management of various inflammatory-mediated immune disorders.
  3. Harikrishnan H, Banga Singh KK, Ismail A
    PLoS One, 2017;12(8):e0182878.
    PMID: 28846684 DOI: 10.1371/journal.pone.0182878
    Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.
  4. Haque MA, Jantan I, Harikrishnan H, Ghazalee S
    Phytomedicine, 2019 Feb 15;54:195-205.
    PMID: 30668369 DOI: 10.1016/j.phymed.2018.09.183
    BACKGROUND: Zingiber zerumbet rhizome has been used as spices and in traditional medicine to heal various immune-inflammatory related ailments. Although the plant was reported to have potent anti-inflammatory and immunosuppressive properties by several studies, the molecular mechanisms underlying the effects have not been well justified.

    PURPOSE: The study was carried out to investigate the molecular mechanisms underlying the anti-inflammatory properties of the standardized 80% ethanol extract of Z. zerumbet through its effect on mitogen-activated protein kinase (MyD88)-dependent nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling pathways in lipopolysaccharide (LPS)-induced U937 human macrophages.

    METHODS: Standardization of the 80% ethanol extract of Z. zerumbet was performed by using a validated reversed-phase HPLC method, while LC-MS/MS was used to profile the secondary metabolites. The release of pro-inflammatory markers, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay (ELISA), while the Western blot technique was executed to elucidate the expression of mediators linked to MyD88-dependent respective signaling pathways. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out to quantify the relative gene expression of cyclooxygenase (COX)-2 and pro-inflammatory mediators at the transcriptional level.

    RESULTS: The quantitative and qualitative analyses of Z. zerumbet extract showed the presence of several compounds including the major chemical marker zerumbone. Z. zerumbet extract suppressed the release of pro-inflammatory mediators, COX-2 protein expression and downregulated the mRNA expression of pro-inflammatory markers. Z. zerumbet-treatment also blocked NF-κB activation by preventing the phosphorylation of IKKα/β and NF-κB (p65) as well as the phosphorylation and degradation of IκBα. Z. zerumbet extract concentration-dependently inhibited the phosphorylation of respective MAPKs (JNK, ERK, and p38) as well as Akt. Correspondingly, Z. zerumbet extract suppressed the upstream signaling adaptor molecules, TLR4 and MyD88 prerequisite for the NF-κB, MAPKs, and PI3K-Akt activation.

    CONCLUSION: The findings suggest that Z. zerumbet has impressive role in suppressing inflammation and related immune disorders by inhibition of various pro-inflammatory markers through the imperative MyD88-dependent NF-κB, MAPKs, and PI3K-Akt activation.

  5. Haque MA, Jantan I, Harikrishnan H, Ahmad W
    BMC Complement Med Ther, 2020 Aug 06;20(1):245.
    PMID: 32762741 DOI: 10.1186/s12906-020-03039-7
    BACKGROUND: Immunomodulatory effects of Tinospora crispa have been investigated due to its traditional use to treat several inflammatory disorders associated to the immune system. The present study reports the underlying mechanisms involved in the stimulation of 80% ethanol extract of T. crispa stems on pro-inflammatory mediators release in lipopolysaccharide (LPS)-primed U937 human macrophages via MyD88-dependent pathways.

    METHODS: Release of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and production of prostaglandin E2 (PGE2) were determined by using enzyme-linked immunosorbent assay (ELISA). Immunoblot technique was executed to determine the activation of MAPKs molecules, NF-κB, PI3K-Akt and cyclooxygenase-2 (COX-2) protein. Determination of pro-inflammatory cytokines and COX-2 relative gene expression levels was by performing the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). A reversed-phase HPLC method was developed and validated to standardize the T. crispa extract and chemical profiling of its secondary metabolites was performed by LC-MS/MS.

    RESULTS: Qualitative and quantitative analyses of chromatographic data indicated that syringin and magnoflorine were found as the major components of the extract. T. crispa-treatment prompted activation of NF-κB by enhancing IKKα/β and NF-κB (p65) phosphorylation, and degradation of IκBα. The extract upregulated COX-2 protein expression, release of pro-inflammatory mediators and MAPKs (ERK, p38 and JNK) phosphorylation as well as Akt dose-dependently. T. crispa extract also upregulated the upstream signaling adaptor molecules, toll-like receptor 4 (TLR4) and MyD88. T. crispa-treatment also upregulated the pro-inflammatory markers mRNA expression.

    CONCLUSION: The results suggested that T. crispa extract stimulated the MyD88-dependent signaling pathways by upregulating the various immune inflammatory related parameters.

  6. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E
    BMC Complement Altern Med, 2018 Jul 25;18(1):224.
    PMID: 30045725 DOI: 10.1186/s12906-018-2289-3
    BACKGROUND: Phyllanthus amarus has been used widely in various traditional medicines to treat swelling, sores, jaundice, inflammatory diseases, kidney disorders, diabetes and viral hepatitis, while its pharmacological and biochemical mechanisms underlying its anti-inflammatory properties have not been well investigated. The present study was carried out to investigate the effects of 80% ethanolic extract of P. amarus on pro-inflammatory mediators release in nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling activation in lipopolysaccharide (LPS)-induced U937 human macrophages.

    METHODS: The release of prostaglandin E2 (PGE2) and pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β in a culture supernatant was determined by ELISA. Determination of cyclooxygenase-2 (COX-2) protein and the activation of MAPKs molecules (JNK, ERK and p38 MAPK), NF-κB and Akt in LPS-induced U937 human macrophages were investigated by immunoblot technique. The relative gene expression levels of COX-2 and pro-inflammatory cytokines were measured by using qRT-PCR. The major metabolites of P. amarus were qualitatively and quantitatively analyzed in the extract by using validated reversed-phase high performance liquid chromatography (HPLC) methods.

    RESULTS: P. amarus extract significantly inhibited the production of pro-inflammatory mediators (TNF-α, IL-1β, PGE2) and COX-2 protein expression in LPS-induced U937 human macrophages. P. amarus-pretreatment also significantly downregulated the increased mRNA transcription of pro-inflammatory markers (TNF-α, IL-1β, and COX-2) in respective LPS-induced U937 macrophages. It downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β and restored the degradation of IκBα, and attenuated the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a dose-dependent manner. P. amarus extract also downregulated the expression of upstream signaling molecules, TLR4 and MyD88, which play major role in activation of NF-κB, MAPK and PI3K-Akt signaling pathways. The quantitative amounts of lignans, phyllanthin, hypophyllahtin and niranthin, and polyphenols, gallic acid, geraniin, corilagin, and ellagic acid in the extract were determined by HPLC analysis.

    CONCLUSION: The study revealed that P. amarus targeted the NF-κB, MAPK and PI3K-Akt signaling pathways to exert its anti- inflammatory effects by downregulating the prospective inflammatory signaling mediators.

  7. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E
    Phytother Res, 2018 Dec;32(12):2510-2519.
    PMID: 30238535 DOI: 10.1002/ptr.6190
    Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.
  8. Harikrishnan H, Jantan I, Alagan A, Haque MA
    Inflammopharmacology, 2020 Feb;28(1):1-18.
    PMID: 31792765 DOI: 10.1007/s10787-019-00671-9
    The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
  9. Haque MA, Jantan I, Harikrishnan H, Abdul Wahab SM
    Planta Med, 2018 Nov;84(17):1255-1264.
    PMID: 29906814 DOI: 10.1055/a-0637-9936
    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF-κB, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF-κB, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF-α, IL-1β, and PGE2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF-κB activation by prompting p65, IκBα, and IKKα/β phosphorylation as well as IκBα degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF-κB, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF-α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses.
  10. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E
    Inflammation, 2018 Jun;41(3):984-995.
    PMID: 29427163 DOI: 10.1007/s10753-018-0752-4
    Hypophyllanthin (HYP) and niranthin (NIR) are major lignans in Phyllanthus spp. and have been shown to possess strong anti-inflammatory activity. In this study, we investigated the anti-inflammatory effects and the underlying molecular mechanisms of HYP and NIR in in vitro cellular model of LPS-induced U937 macrophages. The effects of HYP and NIR on the production of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were measured by using ELISA, Western blot, and qRT-PCR. The expressions of signaling molecules related to nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphatidylinositol 3'-kinase-Akt (PI3K-Akt) signaling pathways were examined. The role of NF-κB, MAPKs, and Akt signaling pathways was confirmed by using specific inhibitors (BAY 11-7082, U0126, SB202190, SP600125, and LY294002) mediated suppression of TNF-α and COX-2 production. HYP and NIR significantly inhibited the protein and gene levels of COX-2 as well as the downstream signaling products of PGE2, TNF-α, and IL-1β. HYP and NIR also suppressed the inhibitors of kappa B (IκB), IkB kinases (Ikkα/β), NF-κB phosphorylation, and IκB degradation. HYP suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 while NIR only suppressed JNK and ERK but did not have effect on p38. These results demonstrate that HYP and NIR downregulated COX-2, TNF-α, and IL-1β gene expressions in U937 macrophages by interfering with the activation of NF-κB, MAPKs, and Akt. In conclusion, these lignans have potential to be developed as anti-inflammatory agents targeting the NF-κB, MAPK, and PI3K-Akt pathways.
  11. Arshad L, Haque MA, Harikrishnan H, Ibrahim S, Jantan I
    Mol Biol Rep, 2024 Jul 11;51(1):789.
    PMID: 38990383 DOI: 10.1007/s11033-024-09722-z
    BACKGROUND: Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide.

    METHODS: The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR.

    RESULTS: Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1β secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/β, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment.

    CONCLUSION: The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.

  12. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links