Numerous mitigation techniques have been incorporated to capture or remove SO2 with flue gas desulfurization (FGD) being the most common method. Regenerative FGD method is advantageous over other methods due to high desulfurization efficiency, sorbent regenerability, and reduction in waste handling. The capital costs of regenerative methods are higher than those of commonly used once-through methods simply due to the inclusion of sorbent regeneration while operational and management costs depend on the operating hours and fuel composition. Regenerable sorbents like ionic liquids, deep eutectic solvents, ammonium halide solutions, alkyl-aniline solutions, amino acid solutions, activated carbons, mesoporous silica, zeolite, and metal-organic frameworks have been reported to successfully achieve high SO2 removal. The presence of other gases in flue gas, e.g., O2, CO2, NOx, and water vapor, and the reaction temperature critically affect the sorption capacity and sorbent regenerability. To obtain optimal SO2 removal performance, other parameters such as pH, inlet SO2 concentration, and additives need to be adequately governed. Due to its high removal capacity, easy preparation, non-toxicity, and low regeneration temperature, the use of deep eutectic solvents is highly feasible for upscale utilization. Metal-organic frameworks demonstrated highest reported SO2 removal capacity; however, it is not yet applicable at industrial level due to its high price, weak stability, and robust formulation.
The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.
Microplastic (MP) is an emerging contaminant of concern due to its ubiquitous quantity in the environment, small size, and potential toxicity due to strong affinity towards other contaminants. In this work, MP particles (5-300 μm) were extracted from a commercial facial cleanser and determined to be irregular polyethylene (PE) microbeads based on characterization with field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The potential of extracted MP acting as toxic pollutants' vector was analyzed via adsorption of methylene blue and methyl orange dye where significant dye uptake was observed. Synthetic wastewater containing the extracted MP was subjected to a continuous-flow column study using palm kernel shell and coconut shell biochar as the filter/adsorbent media. The prepared biochar was characterized via proximate and ultimate analysis, FESEM, contact angle measurement, atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy to investigate the role of the biochar properties in MP removal. MP removal performance was determined by measuring the turbidity and weighing the dry mass of particles remaining in the effluent following treatment. Promising results were obtained from the study with highest removal of MP (96.65%) attained through palm kernel shell biochar with particle size of 0.6-1.18 mm and continuous-flow column size of 20 mm.
The hazardous dyes on mixing with water resources are affecting many life forms. Granite stone is popular worldwide for decorating floors, making other forms of decorative materials and items. Granite stone powder waste can be obtained free of cost from marble factories as factories spend on the disposal of this waste. In the present study, novel granite stone powder waste composite has been prepared and utilized for the effective removal of Terasil dye. Two types of granite including gray granite and white granite were used in pure, calcinized, and chemically modified forms. Freundlich adsorption isotherm model best explained the adsorption mechanism of dye removal using granite composites as compared to other adsorption isothermal models. Characterization techniques like scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used for the determination of morphological features and functional groups of granite composites. The obtained results were statistically analyzed using analysis of variance (ANOVA) along with the post hoc Tukey test. An extraordinarily high Terasil dye uptake capacity (more than 400 mg/g) was exhibited by granite composites prepared using sodium metasilicate. The synthesized novel nano-constructed composites provided a viable strategy as compared to the pure granite stone for dye removal from wastewater water.
The main purpose of this manuscript is to report the new usage of tea waste (TW) as a catalyst for efficient conversion of palm fatty acid distillate (PFAD) to biodiesel. In this work, we investigate the potential of tea waste char as a catalyst for biodiesel production before and after sulfonation. The activated sulfonated tea waste char catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), elemental composition (CHNS), nitrogen adsorption-desorption using Brunauer-Emmett-Teller (BET) and ammonia-temperature-programmed desorption (NH3-TPD). The activated tea waste char catalyst shows higher acid density of 31 μmol g-1 as compared to tea waste char of 16 μmol g-1 and higher surface area of 122 m2/g. The optimum fatty acid conversion conditions were found that 4 wt % of catalyst loading with 9:1 of methanol:PFAD for 90 min of reaction time at 65 °C gives 97% free fatty acid (FFA) conversion. In conclusion, the sulfonated tea waste (STW) catalyst showed an impressive catalytic activity towards the esterification of PFAD at optimum reaction conditions with significant recyclability in five successive cycles without any reactivation step.
Sulphur dioxide, a toxic gas pollutant, is mainly generated by the combustion of fossil fuels and the smelting of sulphur-bearing mineral ores. Removal of SO2 gas or desulphurisation can be accomplished in industries using a variety of processes; the most efficient is wet flue gas desulphurisation (FGD). However, wet FGD has challenges, such as the requirement for wastewater treatment, excessive water usage, and the necessity for chloride protective coating. Despite having a lesser adsorption capacity than wet FGD, dry FGD can efficiently remove SO2 from the effluent gas stream and avoid the issues associated with wet FGD, provided that the sorbents are modified and regenerable. An alternative dry desulphurisation strategy by using fibrous mesoporous silica (KCC-1) modified with deep eutectic solvents (DES), choline chloride-glycerol (DES1) and choline chloride-ethylene glycol (DES2) is studied in this paper. KCC-1 modified with DES1 is found to increase SO2 adsorption capacity to 4.83 mg g-1, which is 1.73 times greater than unmodified KCC-1 and twice higher than KCC-1 modified with DES2 attributed to the sorbent's high porosity. Increasing reaction temperature and SO2 concentration reduce the adsorption capacity to 1.73 mg g-1 and 2.73 mg g-1, respectively. The Avrami kinetic model and the Toth isotherm model best reflect SO2 adsorption on the modified KCC-1, indicating that SO2 molecules are adsorbed exothermically in multilayer adsorption on a heterogeneous surface through a combination of physical and chemical processes. The higher SO2 adsorption capacity of the modified KCC-1 suggests that choline chloride-glycerol can provide additional sites for SO2 adsorption in dry FGD technology.
Research into the speciation of sulfur and hydrogen molecules produced through the complex process of thermophilic dark fermentation has been conducted. Detailed surface studies of solid-gas systems using real biogas (biohydrogen) streams have unveiled the mechanisms and specific interactions between these gases and the physicochemical properties of a zeolite as an adsorbent. These findings highlight the potential of zeolites to effectively capture and interact with these molecules. In this study, the hydrogen sulphide removal analysis was conducted using 0.8 g of the adsorbent and at various reaction temperatures (25-125 °C), a flow rate of 100 mL min-1, and an initial concentration of approximately 5000 ppm hydrogen sulphide. The reaction temperature has been observed to be an essential parameter of Zeolite Socony Mobil - 5 adsorption capacity. The optimum adsorption capacity attains a maximum value of 0.00890 mg g-1 at an optimal temperature of 25 °C. The formation of sulphur species resulting from the hydrogen sulphide adsorption on the zeolite determines the kinetics, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in hydrogen sulphide removal and Zeolite Socony Mobil - 5 is found to improve the quality of biohydrogen produced in thermophilic environments. Biohydrogen (raw gas) yield was enhanced from 2.48 mol H2 mol-1 hexose consumed before adsorption to 2.59 mol H2 mol-1 hexose consumed after adsorption at a temperature of 25 °C. The Avrami kinetic model was fitted for hydrogen sulphide removal on Zeolite Socony Mobil - 5. The process is explained well and fitted using the Temkin isotherm model and the investigation into thermodynamics reveals that the adsorption behaviour is exothermic and non-spontaneous. Furthermore, the gas molecule's freedom of movement becomes random. The adsorption phase is restricted by intra-particle diffusion followed by film diffusion during the transfer of hydrogen sulphide into the pores of Zeolite Socony Mobil - 5 prior to adsorption on its active sites. The utilisation of Zeolite Socony Mobil - 5 for hydrogen sulphide removal offers the benefit of reducing environmental contamination and exhibiting significant applications in industrial operations.