Displaying all 7 publications

Abstract:
Sort:
  1. Chong TM, Yin WF, Chen JW, Mondy S, Grandclément C, Faure D, et al.
    AMB Express, 2016 Dec;6(1):95.
    PMID: 27730570
    Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.
  2. Torres M, Hong KW, Chong TM, Reina JC, Chan KG, Dessaux Y, et al.
    Sci Rep, 2019 Feb 04;9(1):1215.
    PMID: 30718637 DOI: 10.1038/s41598-018-37720-2
    The Alteromonas stellipolaris strains PQQ-42 and PQQ-44, previously isolated from a fish hatchery, have been selected on the basis of their strong quorum quenching (QQ) activity, as well as their ability to reduce Vibrio-induced mortality on the coral Oculina patagonica. In this study, the genome sequences of both strains were determined and analyzed in order to identify the mechanism responsible for QQ activity. Both PQQ-42 and PQQ-44 were found to degrade a wide range of N-acylhomoserine lactone (AHL) QS signals, possibly due to the presence of an aac gene which encodes an AHL amidohydrolase. In addition, the different colony morphologies exhibited by the strains could be related to the differences observed in genes encoding cell wall biosynthesis and exopolysaccharide (EPS) production. The PQQ-42 strain produces more EPS (0.36 g l-1) than the PQQ-44 strain (0.15 g l-1), whose chemical compositions also differ. Remarkably, PQQ-44 EPS contains large amounts of fucose, a sugar used in high-value biotechnological applications. Furthermore, the genome of strain PQQ-42 contained a large non-ribosomal peptide synthase (NRPS) cluster with a previously unknown genetic structure. The synthesis of enzymes and other bioactive compounds were also identified, indicating that PQQ-42 and PQQ-44 could have biotechnological applications.
  3. Chong TM, Yin WF, Mondy S, Grandclément C, Dessaux Y, Chan KG
    J Bacteriol, 2012 Nov;194(22):6366.
    PMID: 23105092 DOI: 10.1128/JB.01702-12
    Here we present the draft genome of Pseudomonas mendocina strain S5.2, possessing tolerance to a high concentration of copper. In addition to being copper resistant, the genome of P. mendocina strain S5.2 contains a number of heavy-metal-resistant genes known to confer resistance to multiple heavy-metal ions.
  4. Chan KG, Chong TM, Adrian TG, Kher HL, Hong KW, Grandclément C, et al.
    Genome Announc, 2015;3(6).
    PMID: 26659682 DOI: 10.1128/genomeA.01442-15
    Stenotrophomonas maltophilia ZBG7B was isolated from vineyard soil of Zellenberg, France. Here, we present the draft genome sequence of this bacterial strain, which has facilitated the prediction of function for several genes encoding biotechnologically important enzymes, such as xylosidase, xylanase, laccase, and chitinase.
  5. Chan KG, Chong TM, Adrian TG, Kher HL, Grandclément C, Faure D, et al.
    J Genomics, 2016;4:26-8.
    PMID: 27512520 DOI: 10.7150/jgen.16146
    Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment.
  6. Bertini EV, Torres MA, Léger T, Garcia C, Hong KW, Chong TM, et al.
    Genomics, 2021 11;113(6):4352-4360.
    PMID: 34793950 DOI: 10.1016/j.ygeno.2021.11.017
    Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.
  7. Chong TM, Chen JW, See-Too WS, Yu CY, Ang GY, Lim YL, et al.
    AMB Express, 2017 Dec;7(1):138.
    PMID: 28655216 DOI: 10.1186/s13568-017-0437-7
    Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links