Displaying all 3 publications

Abstract:
Sort:
  1. Wurster CM, Bird MI, Bull ID, Creed F, Bryant C, Dungait JA, et al.
    Proc Natl Acad Sci U S A, 2010 Aug 31;107(35):15508-11.
    PMID: 20660748 DOI: 10.1073/pnas.1005507107
    Today, insular Southeast Asia is important for both its remarkably rich biodiversity and globally significant roles in atmospheric and oceanic circulation. Despite the fundamental importance of environmental history for diversity and conservation, there is little primary evidence concerning the nature of vegetation in north equatorial Southeast Asia during the Last Glacial Period (LGP). As a result, even the general distribution of vegetation during the Last Glacial Maximum is debated. Here we show, using the stable carbon isotope composition of ancient cave guano profiles, that there was a substantial forest contraction during the LGP on both peninsular Malaysia and Palawan, while rainforest was maintained in northern Borneo. These results directly support rainforest "refugia" hypotheses and provide evidence that environmental barriers likely reduced genetic mixing between Borneo and Sumatra flora and fauna. Moreover, it sheds light on possible early human dispersal events.
  2. Geng X, Haig J, Lin B, Tian C, Zhu S, Cheng Z, et al.
    Environ Sci Technol, 2023 Sep 05;57(35):13067-13078.
    PMID: 37603309 DOI: 10.1021/acs.est.3c03481
    Aerosol black carbon (BC) is a short-lived climate pollutant. The poorly constrained provenance of tropical marine aerosol BC hinders the mechanistic understanding of extreme climate events and oceanic carbon cycling. Here, we collected PM2.5 samples during research cruise NORC2016-10 through South China Sea (SCS) and Northeast Indian Ocean (NEIO) and measured the dual-carbon isotope compositions (δ13C-Δ14C) of BC using hydrogen pyrolysis technique. Aerosol BC exhibits six different δ13C-Δ14C isotopic spaces (i.e., isotope provinces). Liquid fossil fuel combustion, from shipping emissions and adjacent land, is the predominant source of BC over isotope provinces "SCS close to Chinese Mainland" (53.5%), "Malacca Strait" (53.4%), and "Open NEIO" (40.7%). C3 biomass burning is the major contributor to BC over isotope provinces "NEIO close to Southeast Asia" (55.8%), "Open NEIO" (41.3%), and "Open SCS" (40.0%). Coal combustion and C4 biomass burning show higher contributions to BC over "Sunda Strait" and "Open SCS" than the others. Overall, NEIO near the Bay of Bengal, Malacca Strait, and north SCS are three hot spots of fossil fuel-derived BC; the first two areas are also hot spots of biomass-derived BC. The comparable δ13C-Δ14C between BC in aerosol and dissolved BC in surface seawater may suggest atmospheric BC deposition as a potential source of oceanic dissolved BC.
  3. Munksgaard NC, Kurita N, Sánchez-Murillo R, Ahmed N, Araguas L, Balachew DL, et al.
    Sci Rep, 2019 10 08;9(1):14419.
    PMID: 31595004 DOI: 10.1038/s41598-019-50973-9
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links