Displaying all 6 publications

Abstract:
Sort:
  1. Al-Haddad AY, Kutty MG, Che Ab Aziz ZA
    Int J Biomater, 2018;2018:1731857.
    PMID: 30154852 DOI: 10.1155/2018/1731857
    Objectives: To evaluate the push-out bond strength of experimental apatite calcium phosphate coated gutta-percha (HAGP) compared to different commercially available coated gutta-percha root obturation points.

    Methods: Extracted teeth were selected and instrumented using ProTaper rotary files. The canals were assigned into five equal groups and obturated using matching single cone technique as follows: EndoREZ cones and EndoREZ sealer, Bioceramic Endosequence gutta-percha (BCGP) with Endosequence BC sealer, Active GP with Endosequence BC sealer (ActiV GP), conventional GP with Endosequence BC sealer, and HAGP with Endosequence BC sealer. Each root was sectioned transversally at the thickness of 1±0.1 mm to obtain 5 sections (n=25 per group). The specimens were subjected to push-out test using a Universal Test Machine at a loading speed of 0.5 mm/ min. Failure modes after push-out test was examined under stereomicroscope and the push-out data were analyzed using ANOVA and the post hoc Dunnett T3 test (p = 0.05).

    Results: The highest mean bond strength was yielded by HAGP followed by BCGP, ActiV GP, conventional GP, and EndoREZ. There were significant differences between EndoREZ and all other groups (p<0.001). The prominent failure mode of HAGP was mixed mode, whereas EndoREZ exhibited adhesive failure mode. Conventional GP, ActiV GP, and BCGP showed cohesive failure mode.

    Conclusion: HAGP showed promising results to be used as root canal filling material in combination with bioceramic sealer.

  2. Al-Haddad AY, Kacharaju KR, Haw LY, Yee TC, Rajantheran K, Mun CS, et al.
    J Contemp Dent Pract, 2020 Nov 01;21(11):1218-1221.
    PMID: 33850066
    AIM: This study aimed to evaluate the effect of the prior application of intracanal medicaments on the bond strength of OrthoMTA (mineral trioxide aggregate) and iRoot SP to the root dentin.

    MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.

    RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.

    CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.

    CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.

  3. Alarwali AM, Kutty MG, Al-Haddad AY, Gonzalez MAG
    Am J Dent, 2018 Feb;31(1):39-44.
    PMID: 29630804
    PURPOSE: To evaluate the fracture resistance and failure mode of three different all-ceramic crowns; CEREC Bloc, IPS e.Max Press and Cercon in a simulated clinical situation.

    METHODS: 30 extracted maxillary premolars were prepared and randomly assigned to three groups equally according to the type of crown used. The first was the CEREC group: monolithic feldspathic crowns (CEREC Blocs). The second was the E.Max group: monolithic lithium disilicate crowns (IPS e.Max Press). The third group was the Cercon group: bilayered partially stabilized zirconia crowns (Cercon). All crowns were cemented using dual-cured resin cement (ParaCore). The specimens were then subjected to thermocycling (5-55°C/500 cycles) and loaded to failure at an angle of 45° to the occlusal surface of the crown. Failure data was statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test at α= 0.05. Fractographic analysis was performed to determine the fracture modes of the failed specimens.

    RESULTS: The mean fracture values for CEREC, E.Max and Cercon groups were 387± 60 N, 452 ± 86 N, and 540 ± 171 N, respectively. Significant differences were found between CEREC and Cercon groups (P< 0.05). Catastrophic fracture within the ceramic crown was the major failure mode of the CEREC group. For E.Max and Cercon groups, the major failure mode was exhibiting severe tooth fracture while the ceramic crown remained intact.

    CLINICAL SIGNIFICANCE: CEREC, IPS e.Max Press and Cercon crowns are clinically applicable as they exceeded the normal masticatory forces. However, the CEREC crown is preferred as it maintains the integrity of the natural abutment.

  4. Al-Haddad AY, Kutty MG, Abu Kasim NH, Che Ab Aziz ZA
    J Dent Sci, 2017 Dec;12(4):340-346.
    PMID: 30895073 DOI: 10.1016/j.jds.2017.03.008
    Background/purpose: Intraradicular moisture is not standardized and alters the sealing properties and adhesion of root sealers. The aim of this work was to evaluate the effect of different moisture on the constitution of bioceramic sealers.

    Materials and methods: The sealers were evaluated before mixing, and after setting using X-ray diffraction (XRD), Energy Dispersive Analysis (EDX) and Scanning Electron Microscope (SEM) techniques. Twenty four extracted teeth were prepared and assigned to four groups according to the moisture conditions: (1) dry: using ethanol as final irrigation, (2) normal: using paper points until the last one appeared dry, (3) moist: using a Luer adapter for 5 s followed by 1 paper point, and (4) wet: the canals remained totally flooded. The roots were filled with MTA Fillapex® and Endosequence® BC and kept in phosphate buffer solution at 37 °C for 10 days. Each root was sectioned transversally and longitudinally. The sealers harvested from longitudinal sections were analysed using XRD. Whilst the transverse sections were analysed using SEM/EDX.

    Results: The XRD analysis showed MTA Fillapex composed of Bismuth trioxide, calcium silicate and tricalcium aluminate. The intensity of peaks in the wet condition was reduced. Endosequence BC contained mainly calcium silicate, calcium silicate hydrate, zirconia and calcium hydroxide. The wet condition showed a small increase in hydrated calcium silicate. The EDX analysis showed changes in the elemental concentrations with different moisture conditions. The surface morphology differed with different moisture conditions.

    Conclusion: Tested sealers have different constitution that not affected by the degree of moisture. However, it changed their relative quantity.

  5. Yap WY, Che Ab Aziz ZA, Azami NH, Al-Haddad AY, Khan AA
    Med Princ Pract, 2017;26(5):464-469.
    PMID: 28934753 DOI: 10.1159/000481623
    OBJECTIVE: To evaluate the push-out bond strength and failure modes of different sealers/obturation systems to intraradicular dentin at 2 weeks and 3 months after obturation compared to AH Plus®/gutta-percha.

    MATERIALS AND METHODS: A total of 180 root slices from 60 single-canal anterior teeth were prepared and assigned to 5 experimental groups (n = 36 in each group), designated as G1 (AH Plus®/gutta-percha), G2 (TotalFill BC™ sealer/BC-coated gutta-percha), G3 (TotalFill BC™ sealer/gutta-percha), G4 (EndoREZ® sealer/EndoREZ®-coated gutta-percha), and G5 (EndoREZ® sealer/gutta-percha). Push-out bond strengths of 18 root slices in each group were assessed at 2 weeks and the other 18 at 3 months after obturation using a universal testing machine. Data were analyzed using repeated measures ANOVA. An independent t test was used to compare the mean push-out bond strength for each group at 2 weeks and 3 months after obturation.

    RESULTS: The mean push-out bond strengths of G4 and G5 were significantly lower than those of G1, G2, and G3 (p < 0.05) at both 2 weeks (G1: 1.46 ± 0.29 MPa, G2: 1.74 ± 0.43 MPa, G3: 1.74 ± 0.43 MPa, G4: 0.66 ± 0.31 MPa, G5: 0.74 ± 0.47 MPa) and 3 months after obturation (G1: 1.70 ± 1.05 MPa, G2: 3.69 ± 1.20 MPa, G3: 2.84 ± 0.83 MPa, G4: 0.14 ± 0.05 MPa, G5: 0.24 ± 0.10 MPa). The mean push-out bond strengths of G2 (3.69 ± 1.20 MPa) and G3 (2.84 ± 0.83 MPa) were higher at 3 months compared to 2 weeks after obturation (G2: 1.74 ± 0.43 MPa, G3: 1.33 ± 0.29 MPa).

    CONCLUSION: The TotalFill BC™ obturation system (G2) and the TotalFill BC™ sealer/gutta-percha (G3) showed comparable bond strength to AH Plus®. Their bond strength increased over time, whereas the EndoREZ® obturation system (G4) and EndoREZ sealer (G5) had low push-out bond strength which decreased over time.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links