METHODS: This article provides a comprehensive review of automated sleep stage scoring systems, which were created since the year 2000. The systems were developed for Electrocardiogram (ECG), Electroencephalogram (EEG), Electrooculogram (EOG), and a combination of signals.
RESULTS: Our review shows that all of these signals contain information for sleep stage scoring.
CONCLUSIONS: The result is important, because it allows us to shift our research focus away from information extraction methods to systemic improvements, such as patient comfort, redundancy, safety and cost.
METHODS: Retrospective review of 119 consecutive paediatric patients referred for 18F-FDG-PET/CT at the Department of Nuclear Medicine of the National Cancer Institute, Putrajaya. All had DRE and underwent evaluation at the Paediatric Institute, Hospital Kuala Lumpur. Visually detected areas of 18F-FDG-PET/CT hypometabolism were correlated with clinical, MRI and VEM findings.
RESULTS: Hypometabolism was detected in 102/119 (86%) 18FFDG- PET/CT scans. The pattern of hypometabolism in 73 patients with normal MRI was focal unilobar in 16/73 (22%), multilobar unilateral in 8/73 (11%), bilateral in 27/73 (37%) and global in 5/73 (7%) of patients; whilst 17/73 (23%) showed normal metabolism. In 46 patients with lesions on MRI, 18F-FDG-PET/CT showed concordant localisation and lateralization of the EF in 30/46 (65%) patients, and bilateral or widespread hypometabolism in the rest. Addition of 18FFDG PET/CT impacted decision making in 66/119 (55%) of patients; 24/73 with non-lesional and 30/46 patients with lesional epilepsies were recommended for surgery or further surgical work up, whilst surgery was not recommended in 11/46 patients with lesional epilepsy due to bilateral or widespread hypometabolism. 25 patients subsequently underwent epilepsy surgery, with 16/25 becoming seizure free following surgery.
CONCLUSION: 18F-FDG-PET/CT has an added benefit for the localization and lateralization of EF, particularly in patients with normal or inconclusive MRI.
METHODS: Both ictal and interictal ESI were performed by the use of patient-specific realistic forward models and 3 different linear distributed inverse models. Lateralization as well as concordance between ESI-estimated focuses and single-photon emission computed tomography (SPECT) focuses were assessed.
RESULTS: All the ESI focuses (both ictal and interictal) were found lateralized to the same hemisphere as ictal SPECT focuses. Lateralization results also were in agreement with the lesion sides as visualized on magnetic resonance imaging. Ictal ESI results, obtained from the best-performing inverse model, were fully concordant with the same cortical lobe as SPECT focuses, whereas the corresponding concordance rate is 87.50% in case of interictal ESI.
CONCLUSIONS: Our findings show that ictal ESI gives fully lateralized and highly concordant results with ictal SPECT and may provide a cost-effective substitute for ictal SPECT.
METHODS: Patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS) or in minimally conscious state (MCS) were enrolled within 3 months from their brain injury in 12 specialized medical institutions. Demographic, anamnestic, clinical, and neurophysiologic data were collected at study entry. Patients were then followed up for assessing the primary outcome, that is, clinical diagnosis according to standardized criteria at 6 months postinjury.
RESULTS: We enrolled 147 patients (44 women; mean age 49.4 [95% confidence interval 46.1-52.6] years; VS/UWS 71, MCS 76; traumatic 55, vascular 56, anoxic 36; mean time postinjury 59.6 [55.4-63.6] days). The 6-month follow-up was complete for 143 patients (VS/UWS 70; MCS 73). With respect to study entry, the clinical diagnosis improved in 72 patients (VS/UWS 27; MCS 45). Younger age, shorter time postinjury, higher Coma Recovery Scale-Revised total score, and presence of EEG reactivity to eye opening at study entry predicted better outcome, whereas etiology, clinical diagnosis, Disability Rating Scale score, EEG background activity, acoustic reactivity, and P300 on event-related potentials were not associated with outcome.
CONCLUSIONS: Multimodal assessment could identify patients with higher likelihood of clinical improvement in order to help clinicians, families, and funding sources with various aspects of decision-making. This multicenter, international study aims to stimulate further research that drives international consensus regarding standardization of prognostic procedures for patients with DoC.
METHODS: We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact.
RESULTS: The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals.
COMPARISON WITH EXISTING METHODS: Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy.
CONCLUSIONS: The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available.