Displaying all 4 publications

Abstract:
Sort:
  1. Aziz F, Arof H, Mokhtar N, Mubin M
    J Neural Eng, 2014 Oct;11(5):056018.
    PMID: 25188730 DOI: 10.1088/1741-2560/11/5/056018
    This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.
  2. Huan NJ, Palaniappan R
    J Neural Eng, 2004 Sep;1(3):142-50.
    PMID: 15876633
    In this paper, we have designed a two-state brain-computer interface (BCI) using neural network (NN) classification of autoregressive (AR) features from electroencephalogram (EEG) signals extracted during mental tasks. The main purpose of the study is to use Keirn and Aunon's data to investigate the performance of different mental task combinations and different AR features for BCI design for individual subjects. In the experimental study, EEG signals from five mental tasks were recorded from four subjects. Different combinations of two mental tasks were studied for each subject. Six different feature extraction methods were used to extract the features from the EEG signals: AR coefficients computed with Burg's algorithm, AR coefficients computed with a least-squares (LS) algorithm and adaptive autoregressive (AAR) coefficients computed with a least-mean-square (LMS) algorithm. All the methods used order six applied to 125 data points and these three methods were repeated with the same data but with segmentation into five segments in increments of 25 data points. The multilayer perceptron NN trained by the back-propagation algorithm (MLP-BP) and linear discriminant analysis (LDA) were used to classify the computed features into different categories that represent the mental tasks. We compared the classification performances among the six different feature extraction methods. The results showed that sixth-order AR coefficients with the LS algorithm without segmentation gave the best performance (93.10%) using MLP-BP and (97.00%) using LDA. The results also showed that the segmentation and AAR methods are not suitable for this set of EEG signals. We conclude that, for different subjects, the best mental task combinations are different and proper selection of mental tasks and feature extraction methods are essential for the BCI design.
  3. Makhtar S, Senik M, Stevenson CW, Mason R, Halliday D
    J Neural Eng, 2020 Feb 26.
    PMID: 32103827 DOI: 10.1088/1741-2552/ab7a50
    OBJECTIVE: Graphical networks and network metrics are widely used to understand and characterise brain networks and brain function. These methods can be applied to a range of electrophysiological data including electroencephalography, local field potential and single unit recordings. Functional networks are often constructed using pair-wise correlation between variables. The objective of this study is to demonstrate that functional networks can be more accurately estimated using partial correlation than with pair-wise correlation.

    APPROACH: We compared network metrics derived from unconditional and conditional graphical networks, obtained using coherence and multivariate partial coherence (MVPC), respectively. Graphical networks were constructed using coherence and MVPC estimates, and binary and weighted network metrics derived from these: node degree, path length, clustering coefficients and small-world index.

    MAIN RESULTS: Network metrics were applied to simulated and experimental single unit spike train data. Simulated data used a 10x10 grid of simulated cortical neurons with centre-surround connectivity. Conditional network metrics gave a more accurate representation of the known connectivity: Numbers of excitatory connections had range 3-11, unconditional binary node degree had range 6-80, conditional node degree had range 2-13. Experimental data used multi-electrode array recording with 19 single-units from left and right hippocampal brain areas in a rat model for epilepsy. Conditional network analysis showed similar trends to simulated data, with lower binary node degree and longer binary path lengths compared to unconditional networks.

    SIGNIFICANCE: We conclude that conditional networks, where common dependencies are removed through partial coherence analysis, give a more accurate representation of the interactions in a graphical network model. These results have important implications for graphical network analyses of brain networks and suggest that functional networks should be derived using partial correlation, based on MVPC estimates, as opposed to the common approach of pair-wise correlation.

  4. Alawi M, Lee PF, Deng ZD, Goh YK, Croarkin PE
    J Neural Eng, 2023 Mar 16;20(2).
    PMID: 36240726 DOI: 10.1088/1741-2552/ac9a76
    Objective. The therapeutic application of noninvasive brain stimulation modalities such as transcranial magnetic stimulation (TMS) has expanded in terms of indications and patient populations. Often neurodevelopmental and neurodegenerative changes are not considered in research studies and clinical applications. This study sought to examine TMS dosing across time points in the life cycle.Approach. TMS induced electric fields with a figure-of-eight coil was simulated at left dorsolateral prefrontal cortex regions and taken in vertex as a control region. Realistic magnetic resonance imaging-based head models (N= 48) were concurrently examined in a cross-sectional study of three different age groups (children, adults, and elderlies).Main results. Age had a negative correlation with electric field peaks in white matter, grey matter and cerebrospinal fluid (P< 0.001). Notably, the electric field map in children displayed the widest cortical surface spread of TMS induced electric fields.Significance. Age-related anatomical geometry beneath the coil stimulation site had a significant impact on the TMS induced electric fields for different age groups. Safety considerations for TMS applications and protocols in children are warranted based on the present electric field findings.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links