Displaying publications 161 - 180 of 233 in total

Abstract:
Sort:
  1. Hung CC, Banerjee S, Gilada I, Green K, Inoue Y, Kamarulzaman A, et al.
    PLoS One, 2022;17(7):e0270831.
    PMID: 35857755 DOI: 10.1371/journal.pone.0270831
    BACKGROUND: The COVID-19 pandemic has threatened continued access to public health services worldwide, including HIV prevention and care. This study aimed to evaluate the impact of the COVID-19 pandemic on HIV service access and delivery in the Asia region.

    METHODS: A descriptive, cross-sectional, online study, conducted between October-November 2020, assessed the impact of COVID-19 on HIV prevention and care among people living with HIV (PLHIV), key populations (KPs), and healthcare providers (HCPs). The study populations were recruited across ten Asian countries/territories, covering Hong Kong, India, Japan, Malaysia, Philippines, Singapore, Korea, Taiwan, Thailand, and Vietnam.

    RESULTS: Across the region, 702 PLHIV, 551 KPs, and 145 HCPs were recruited. Both PLHIV and KPs reported decreased or had yet to visit hospitals/clinics (PLHIV: 35.9%; KPs: 57.5%), reduced HIV RNA viral load testing (21.9%; 47.3%), and interruptions in antiretroviral therapy (ART) (22.3%) or decreased/complete stop of HIV prevention medication consumption (40.9%). Travel constraints (40.6%), financial issues (28.9%), and not receiving prescription refills (26.9%) were common reasons for interrupted ART access, whereas reduced engagements in behaviours that could increase the risks of HIV acquisition and transmission (57.7%), travel constraints (41.8%), and less hospital/clinic visits (36.7%) underlie the disruptions in HIV preventive medications. Decreased visits from PLHIV/KPs and rescheduled appointments due to clinic closure were respectively reported by 50.7%-52.1% and 15.6%-17.0% of HCPs; 43.6%-61.9% observed decreased ART/preventive medication refills. Although 85.0% of HCPs adopted telemedicine to deliver HIV care services, 56.4%-64.1% of PLHIV/KPs were not using telehealth services.

    CONCLUSIONS: The COVID-19 pandemic substantially disrupted HIV prevention to care continuum in Asia at the time of the study. The findings highlighted differences in HIV prevention to care continuum via telehealth services utilisation by PLHIV, KPs, and HCPs. Efforts are needed to optimise infrastructure and adapt systems for continued HIV care with minimal disruptions during health emergency crises.

  2. Vihal S, Pundir S, Rathore C, Ranjan Lal U, Gupta G, Kumar Singh S, et al.
    Curr Drug Deliv, 2025;22(1):80-91.
    PMID: 38956909 DOI: 10.2174/0115672018246645231019131748
    BACKGROUND: The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone (<15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions.

    AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.

    OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.

    METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.

    RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08 mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1 nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).

    CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.

  3. Rehvathy V, Tan MH, Gunaletchumy SP, Teh X, Wang S, Baybayan P, et al.
    Genome Announc, 2013;1(5).
    PMID: 24051312 DOI: 10.1128/genomeA.00687-13
    Helicobacter pylori causes human gastroduodenal diseases, including chronic gastritis and peptic ulcer disease. It is also a major microbial risk factor for the development of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Twenty-one strains with different ethnicity, disease, and antimicrobial susceptibility backgrounds were sequenced by use of Illumina HiSeq and PacBio RS platforms.
  4. Sumatoh HR, Oliver BG, Kumar M, Elliott JH, Vonthanak S, Vun MC, et al.
    Biomark Med, 2011 Dec;5(6):847-53.
    PMID: 22103621 DOI: 10.2217/bmm.11.79
    Immune restoration disease (IRD) associated with Mycobacterium tuberculosis parallels the reconstitution of a pathogen-specific Th1 response. However, it is not clear whether humoral responses to M. tuberculosis antigens also rise, or whether antibody levels predict IRD. Here, humoral immunity to M. tuberculosis antigens was investigated in four Asian cohorts.
  5. Chowdhury TH, Islam A, Mahmud Hasan AK, Terdi MA, Arunakumari M, Prakash Singh S, et al.
    Chem Rec, 2016 Apr;16(2):614-32.
    PMID: 26816190 DOI: 10.1002/tcr.201500206
    Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells.
  6. Law KB, Peariasamy KM, Gill BS, Singh S, Sundram BM, Rajendran K, et al.
    Sci Rep, 2020 12 10;10(1):21721.
    PMID: 33303925 DOI: 10.1038/s41598-020-78739-8
    The susceptible-infectious-removed (SIR) model offers the simplest framework to study transmission dynamics of COVID-19, however, it does not factor in its early depleting trend observed during a lockdown. We modified the SIR model to specifically simulate the early depleting transmission dynamics of COVID-19 to better predict its temporal trend in Malaysia. The classical SIR model was fitted to observed total (I total), active (I) and removed (R) cases of COVID-19 before lockdown to estimate the basic reproduction number. Next, the model was modified with a partial time-varying force of infection, given by a proportionally depleting transmission coefficient, [Formula: see text] and a fractional term, z. The modified SIR model was then fitted to observed data over 6 weeks during the lockdown. Model fitting and projection were validated using the mean absolute percent error (MAPE). The transmission dynamics of COVID-19 was interrupted immediately by the lockdown. The modified SIR model projected the depleting temporal trends with lowest MAPE for I total, followed by I, I daily and R. During lockdown, the dynamics of COVID-19 depleted at a rate of 4.7% each day with a decreased capacity of 40%. For 7-day and 14-day projections, the modified SIR model accurately predicted I total, I and R. The depleting transmission dynamics for COVID-19 during lockdown can be accurately captured by time-varying SIR model. Projection generated based on observed data is useful for future planning and control of COVID-19.
  7. Sharma A, Hawthorne S, Jha SK, Jha NK, Kumar D, Girgis S, et al.
    Nanomedicine (Lond), 2021 08;16(20):1763-1773.
    PMID: 34296625 DOI: 10.2217/nnm-2021-0066
    Aim: This study was aimed at evaluating the anticancer potential of curcumin-loaded poly(lactic-co-glycolic acid) (PLGA) based nanoparticles (NPs) in MDA-MB231 human breast cancer cells. Methods: Curcumin-loaded PLGA NPs were developed using a modified solvent evaporation technique. Physical characterization was performed on the formulated NPs. Furthermore, in vitro experiments were conducted to study the biological activity of the curcumin-loaded NPs. Results: Curcumin-loaded PLGA NPs demonstrated high encapsulation efficiency and sustained payload release. Moreover, the NPs exhibited a significant reduction in cell viability, cell migration and cell invasion in the MDA-MB231 cells. Conclusion: The study revealed that the formulated curcumin-loaded PLGA NPs possessed significant anti-metastatic properties. The findings showcased the possible potential of curcumin-loaded NPs in the management of debilitating conditions such as cancer. In addition, this study could form the basis for further research and advancements in this area.
  8. Gulati N, Kumar Chellappan D, M Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, et al.
    Assay Drug Dev Technol, 2021 05 14;19(4):246-261.
    PMID: 33989048 DOI: 10.1089/adt.2021.012
    Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
  9. Walewski J, Hellmann A, Siritanaratkul N, Ozsan GH, Ozcan M, Chuncharunee S, et al.
    Br J Haematol, 2018 11;183(3):400-410.
    PMID: 30168134 DOI: 10.1111/bjh.15539
    Some patients with relapsed/refractory Hodgkin lymphoma (HL) are not considered suitable for stem cell transplant (SCT) and have a poor prognosis. This phase IV study (NCT01990534) evaluated brentuximab vedotin (1·8 mg/kg intravenously once every 3 weeks) in 60 patients (aged ≥18 years) with CD30-positive relapsed/refractory HL, a history of ≥1 prior systemic chemotherapy regimen, who were considered unsuitable for SCT/multi-agent chemotherapy. Primary endpoint was overall response rate (ORR) per independent review facility (IRF). Secondary endpoints included duration of response (DOR), progression-free survival (PFS) per IRF, overall survival (OS), proportion proceeding to SCT and safety. The ORR was 50%, with 12% CR; 47% proceeded to SCT. Median DOR was 4·6 months and median duration of CR was 6·1 months. After a median follow-up of 6·9 and 16·6 months, median PFS and OS were 4·8 months (95% confidence interval, 3·0-5·3) and not reached, respectively; estimated OS rate was 86% at 12 months. Most common adverse events (≥10%) were peripheral neuropathy (35%), pyrexia (18%), diarrhoea and neutropenia (each 10%). Brentuximab vedotin showed notable activity with a safety profile consistent with known toxicities, and may act as a bridge to SCT, enabling high-risk patients who achieve suboptimal response to frontline/salvage chemotherapy/radiotherapy to receive potentially curative SCT.
  10. Apisarnthanarak A, Kim HB, Moore L, Xiao Y, Singh S, Doi Y, et al.
    Infect Control Hosp Epidemiol, 2021 07;42(7):864-868.
    PMID: 34128462 DOI: 10.1017/ice.2021.149
    Rapid diagnostic testing (RDT) can provide prompt, accurate identification of infectious organisms and be a key component of antimicrobial stewardship (AMS) programs. However, their use is less widespread in Asia Pacific than western countries. Cost can be prohibitive, particularly in less resource-replete settings. A selective approach is required, possibly focusing on the initiation of antimicrobials, for differentiating bacterial versus viral infections and identifying locally relevant tropical diseases. Across Asia Pacific, more data are needed on RDT use within AMS, focusing on the impact on antimicrobial usage, patient morbidity and mortality, and cost effectiveness. Moreover, in the absence of formal guidelines, regional consensus statements to guide clinical practice are warranted. These will provide a regionally relevant definition for RDT; greater consensus on its role in managing infections; advice on implementation and overcoming barriers; and guidance on optimizing human resource capacity. By addressing these issues, the outcomes of AMS programs should improve.
  11. John O, Sarbadhikari SN, Prabhu T, Goel A, Thomas A, Shroff S, et al.
    Interact J Med Res, 2022 Feb 08;11(1):e30755.
    PMID: 35133279 DOI: 10.2196/30755
    This viewpoint summarizes the discussion that occurred during the "Translating Policy to Practice in Telehealth-Lessons from Global Implementation Experiences" panel that was held virtually at Telemedicon2020, December 18-20, 2020. This panel brought together policy and implementation experts from some countries of South Asia, Kuwait, and the European Union to share their experiences in the development and implementation of telehealth standards and of the scale up of telehealth interventions within health systems. Several common themes arose from the discussion, including the significant role of people; encouragement by respective government policymakers; addressing concerns, particularly related to privacy, confidentiality, and security; and capacity building of human resources. These are discussed in turn, along with the future directions identified by the panelists, which emphasized the need for active encouragement toward the adoption and diffusion of digital health in general and of telehealth in particular. All stakeholders, ranging from governmental policymakers to common citizens, need to come together to build trusting partnerships to realize the advantages offered by telehealth.
  12. Herng LC, Singh S, Sundram BM, Zamri ASSM, Vei TC, Aris T, et al.
    Sci Rep, 2022 02 09;12(1):2197.
    PMID: 35140319 DOI: 10.1038/s41598-022-06341-1
    This paper aims to develop an automated web application to generate validated daily effective reproduction numbers (Rt) which can be used to examine the effects of super-spreading events due to mass gatherings and the effectiveness of the various Movement Control Order (MCO) stringency levels on the outbreak progression of COVID-19 in Malaysia. The effective reproduction number, Rt, was estimated by adopting and modifying an Rt estimation algorithm using a validated distribution mean of 3.96 and standard deviation of 4.75 with a seven-day sliding window. The Rt values generated were validated using thea moving window SEIR model with a negative binomial likelihood fitted using methods from the Bayesian inferential framework. A Pearson's correlation between the Rt values estimated by the algorithm and the SEIR model was r = 0.70, p 
  13. Rahman I, Singh P, Dev N, Arif M, Yusufi FNK, Azam A, et al.
    Materials (Basel), 2022 Nov 15;15(22).
    PMID: 36431551 DOI: 10.3390/ma15228066
    The findings of an extensive experimental research study on the usage of nano-sized cement powder and other additives combined to form cement-fine-aggregate matrices are discussed in this work. In the laboratory, dry and wet methods were used to create nano-sized cements. The influence of these nano-sized cements, nano-silica fumes, and nano-fly ash in different proportions was studied to the evaluate the engineering properties of the cement-fine-aggregate matrices concerning normal-sized, commercially available cement. The composites produced with modified cement-fine-aggregate matrices were subjected to microscopic-scale analyses using a petrographic microscope, a Scanning Electron Microscope (SEM), and a Transmission Electron Microscope (TEM). These studies unravelled the placement and behaviour of additives in controlling the engineering properties of the mix. The test results indicated that nano-cement and nano-sized particles improved the engineering properties of the hardened cement matrix. The wet-ground nano-cement showed the best result, 40 MPa 28th-day compressive strength, without mixing any additive compared with ordinary and dry-ground cements. The mix containing 50:50 normal and wet-ground cement exhibited 37.20 MPa 28th-day compressive strength. All other mixes with nano-sized dry cement, silica fume, and fly ash with different permutations and combinations gave better results than the normal-cement-fine-aggregate mix. The petrographic studies and the Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analyses further validated the above findings. Statistical analyses and techniques such as correlation and stepwise multiple regression analysis were conducted to compose a predictive equation to calculate the 28th-day compressive strength. In addition to these methods, a repeated measures Analysis of Variance (ANOVA) was also implemented to analyse the statistically significant differences among three differently timed strength readings.
  14. Yadav S, Arya DK, Pandey P, Anand S, Gautam AK, Ranjan S, et al.
    Int J Nanomedicine, 2022;17:6843-6859.
    PMID: 36605559 DOI: 10.2147/IJN.S388264
    INTRODUCTION: Foot ulceration is one of the most severe and debilitating complications of diabetes, which leads to the cause of non-traumatic lower-extremity amputation in 15-24% of affected individuals. The healing of diabetic foot (DF) is a significant therapeutic problem due to complications from the multifactorial healing process. Electrospun nanofibrous scaffold loaded with various wound dressing materials has excellent wound healing properties due to its multifunctional action.

    PURPOSE: This work aimed to develop and characterize chitosan (CS)-polyvinyl alcohol (PVA) blended electrospun multifunctional nanofiber loaded with curcumin (CUR) and zinc oxide (ZnO) to accelerate diabetic wound healing in STZ-induced diabetic rats.

    RESULTS: In-vitro characterization results revealed that nanofiber was fabricated successfully using the electrospinning technique. SEM results confirmed the smooth surface with web-like fiber nanostructure diameter ranging from 200 - 250 nm. An in-vitro release study confirmed the sustained release of CUR and ZnO for a prolonged time. In-vitro cell-line studies demonstrated significantly low cytotoxicity of nanofiber in HaCaT cells. Anti-bacterial studies demonstrated good anti-bacterial and anti-biofilm activities of nanofiber. In-vivo animal studies demonstrated an excellent wound-healing efficiency of the nanofibers in STZ-induced diabetic rats. Furthermore, the ELISA assay revealed that the optimized nanofiber membrane terminated the inflammatory phases successfully by downregulating the pro-inflammatory cytokines (TNF-α, MMP-2, and MMP-9) in wound healing. In-vitro and in-vivo studies conclude that the developed nanofiber loaded with bioactive material can promote diabetic wound healing efficiently via multifunction action such as the sustained release of bioactive molecules for a prolonged time of duration, proving anti-bacterial/anti-biofilm properties and acceleration of cell migration and proliferation process during the wound healing.

    DISCUSSION: CUR-ZnO electrospun nanofibers could be a promising drug delivery platform with the potential to be scaled up to treat diabetic foot ulcers effectively.

  15. Tee KK, Chan PQ, Loh AM, Singh S, Teo CH, Iyadorai T, et al.
    J Med Virol, 2023 Feb;95(2):e28520.
    PMID: 36691929 DOI: 10.1002/jmv.28520
    Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
  16. Sharma N, Zahoor I, Sachdeva M, Subramaniyan V, Fuloria S, Fuloria NK, et al.
    Environ Sci Pollut Res Int, 2021 Nov;28(43):60459-60476.
    PMID: 34545518 DOI: 10.1007/s11356-021-16570-y
    Meningitis is an inflammation of the protective membranes called meninges and fluid adjacent the brain and spinal cord. The inflammatory progression expands all through subarachnoid space of the brain and spinal cord and occupies the ventricles. The pathogens like bacteria, fungi, viruses, or parasites are main sources of infection causing meningitis. Bacterial meningitis is a life-threatening health problem that which needs instantaneous apprehension and treatment. Nesseria meningitidis, Streptococcus pneumoniae, and Haemophilus flu are major widespread factors causing bacterial meningitis. The conventional drug delivery approaches encounter difficulty in crossing this blood-brain barrier (BBB) and therefore are insufficient to elicit the desired pharmacological effect as required for treatment of meningitis. Therefore, application of nanoparticle-based drug delivery systems has become imperative for successful dealing with this deadly disease. The nanoparticles have ability to across BBB via four important transport mechanisms, i.e., paracellular transport, transcellular (transcytosis), endocytosis (adsorptive transcytosis), and receptor-mediated transcytosis. In this review, we reminisce distinctive symptoms of meningitis, and provide an overview of various types of bacterial meningitis, with a focus on its epidemiology, pathogenesis, and pathophysiology. This review describes conventional therapeutic approaches for treatment of meningitis and the problems encountered by them while transmitting across tight junctions of BBB. The nanotechnology approaches like functionalized polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion, liposomes, transferosomes, and carbon nanotubes which have been recently evaluated for treatment or detection of bacterial meningitis have been focused. This review has also briefly summarized the recent patents and clinical status of therapeutic modalities for meningitis.
  17. Al-Harrasi A, Behl T, Upadhyay T, Chigurupati S, Bhatt S, Sehgal A, et al.
    Environ Sci Pollut Res Int, 2022 Jun;29(28):42404-42432.
    PMID: 35362883 DOI: 10.1007/s11356-022-19770-2
    The human coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus; the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Natural products, secondary metabolites show positive leads with antiviral and immunotherapy treatments using genomic studies in silico docking. In addition, it includes the action of a mechanism targeting the SARS-CoV-2. In this literature, we aimed to evaluate the antiviral movement of the NT-VRL-1 unique terpene definition to Human coronavirus (HCoV-229E). The effects of 19 hydrolysable tannins on the SARS-CoV-2 were therefore theoretically reviewed and analyzed utilising the molecular operating surroundings for their C-Like protease 3CLpro catalytic dyad residues Angiotensin converting enzyme-2 (MOE 09). Pedunculagin, tercatan, and castalin were detected as interacting strongly with SARS-receptor Cov-2's binding site and catalytic dyad (Cys145 and His41). SARS-CoV-2 methods of subunit S1 (ACE2) inhibit the interaction of the receiver with the s-protein once a drug molecule is coupled to the s-protein and prevent it from infecting the target cells in alkaloids. Our review strongly demonstrates the evidence that natural compounds and their derivatives can be used against the human coronavirus and serves as an area of research for future perspective.
  18. Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, et al.
    PMID: 35147886 DOI: 10.1007/s11356-022-19082-5
    The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
  19. Nijhawan P, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, et al.
    PMID: 34997511 DOI: 10.1007/s11356-022-18531-5
    Obesity is a multifaceted disease encompassing deposition of an unnecessary amount of fat which upsurges the possibility of other complications, viz., hypertension and certain type of cancers. Although obesity results from combination of genetic factors, improper diet and inadequate physical exercise also play a major role in its onset. The present study aims at exploring the anti-obesity activity of Crinum latifolia leaf extract in obese rats. The leaves were extracted using hydroalcoholic extraction which was later diluted with water and given to obese rats. The dosing was started from the 4th week (by oral administration of extract of Crinum latifolia (100 mg/kg and 200 mg/kg) and combination of Crinum latifolia leaf extract 200 mg/kg and orlistat 30 mg/kg) till the 10th week. Various angiogenic, antioxidant, biochemical, and inflammatory biomarkers were assessed at the end of the study. The obese symptoms were progressively reduced in treatment groups when compared to disease control groups. The angiogenic parameters and inflammatory parameters were consequently reduced in treatment groups. The oxidative parameters superoxide dismutase (SOD) and catalase were gradually increased, while levels of TBARS were reduced in treatment groups showing antioxidant nature of leaf hydroalcoholic extract. The Crinum latifolia leaf extract possesses anti-obesity properties and therefore can be used as a therapeutic option in the management of obesity.
  20. Singh P, Pandey P, Arya DK, Anjum MM, Poonguzhali S, Kumar A, et al.
    Biomed Mater, 2023 Mar 27;18(3).
    PMID: 36921352 DOI: 10.1088/1748-605X/acc4a1
    The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links