OBJECTIVE: To evaluate the genotoxic risk among children who exposed to pesticides and measure DNA damage due to pesticides exposure.
METHODS: In a cross-sectional study 180 Orang Asli Mah Meri children aged between 7 and 12 years were studied. They were all living in an agricultural island in Kuala Langat, Selangor, Malaysia. The data for this study were collected via modified validated questionnaire and food frequency questionnaire, which consisted of 131 food items. 6 urinary organophosphate metabolites were used as biomarkers for pesticides exposure. For genotoxic risk or genetic damage assessment, the level of DNA damage from exfoliated buccal mucosa cells was measured using the comet assay electrophoresis method.
RESULTS: Out of 180 respondents, 84 (46.7%) showed positive traces of organophosphate metabolites in their urine. Children with detectable urinary pesticide had a longer tail length (median 43.5; IQR 30.9 to 68.1 μm) than those with undetectable urinary pesticides (median 24.7; IQR 9.5 to 48.1 μm). There was a significant association between the extent of DNA damage and the children's age, length of residence in the area, pesticides detection, and frequency of apple consumption.
CONCLUSION: The organophosphate genotoxicity among children is associated with the amount of exposure (detectability of urinary pesticide) and length of residence in (exposure) the study area.
MATERIALS AND METHODS: A prospective clinical study was performed on all patients undergoing ureterorenoscopy and lithotripsy for ureteral stones with obstruction between December 1, 2000 and January 31, 2002. We obtained MSU, renal pelvic urine and fragmented stones for culture and sensitivity. An analysis of the data was performed to assess statistical association.
RESULTS: A total of 73 patients who fulfilled the criteria were recruited. Of these patients 25 (34.3%) had positive stone culture, 43 (58.9%) had positive pelvic urine and 21 (28.8%) patients had positive MSU C&S. Stone and pelvic C&S were positive simultaneously in 17 (23.3%) cases, MSU and stone C&S were positive in 8 (10.9%) cases, whereas pelvic and MSU C&S were positive in 13 (16.4%) cases (p = 0.03). MSU C&S had a sensitivity of 30.2% and specificity of 73% to detect pelvic urine C&S positivity. MSU C&S had a low positive predictive value and negative predictive value (NPV) in relation to infected pelvic urine (positive predictive value = 0.62, NPV = 0.42). Pelvic urine C&S had a NPV of 0.73 in detecting noninfected stones.
CONCLUSIONS: The results of this study suggest that in obstructive uropathy secondary to a stone MSU C&S is a poor predictor of infected urine proximal to the obstruction and infected stones.