METHODS: Free vaccination was offered to school girls in secondary school (year seven) in Malaysia, which is usually at the age of 13 in the index year. All recipients of the HPV vaccine were identified through school enrolments obtained from education departments from each district in Malaysia. A total of 242,638 girls aged between 12 to 13 years studying in year seven were approached during the launch of the program in 2010. Approximately 230,000 girls in secondary schools were offered HPV vaccine per year by 646 school health teams throughout the country from 2010 to 2016.
RESULTS: Parental consent for their daughters to receive HPV vaccination at school was very high at 96-98% per year of the programme. Of those who provided consent, over 99% received the first dose each year and 98-99% completed the course per year. Estimated population coverage for the full vaccine course, considering also those not in school, is estimated at 83 to 91% per year. Rates of adverse events reports following HPV vaccination were low at around 2 per 100,000 and the majority was injection site reactions.
CONCLUSION: A multisectoral and integrated collaborative structure and process ensured that the Malaysia school-based HPV immunisation programme was successful and sustained through the programme design, planning, implementation and monitoring and evaluation. This is a critical factor contributing to the success and sustainability of the school-based HPV immunisation programme with very high coverage.
METHODS: We performed a case-control association study by genotyping the HLA-B alleles of 55 patients with AIS [11 toxic epidermal necrolysis (TEN), 21 Steven Johnson syndrome (SJS) 22 drug reaction wit eosinophilia and systemic symptoms (DRESS) and one acute generalized exanthematous pustulosis (AGEP)] and 42 allopurinol-tolerant controls (ATC).
RESULTS: HLA-B*58:01 was positive in 89.1 and 14.3% of the AIS and ATC study groups [odds ratio (OR) = 49.0, 95% confidence interval (CI) = 14.6-164.4, P < 0.0001)], respectively. Our data showed that 93.8% of the AIS-SJS/TEN patients and 86.4% of the AIS-DRESS patients were HLA-B*58:01 positive (AIS-SJS/TEN, OR = 90, 95% CI = 16.9-470.1, P < 0.0001 and AIS-DRESS OR = 38, 95% CI = 8.5-169.2, P < 0.0001). Stratification by ethnicity and clinical phenotypes revealed a significant increased risk between HLA-B*58:01 and Chinese-AIS patients (OR = 137.5, 95% CI = 11.3-1680.2, P < 0.0001), in particular Chinese patients with AIS-SJS/TEN phenotype (100% HLA-B*58:01 positive). HLA-B*58:01 was positive in 90.9% Chinese AIS-DRESS (P < 0.0001). Highly significant associations of HLA-B*58:01 were observed in Malay AIS-SJS/TEN (OR = 78, 95% CI = 9.8-619.9, P < 0.0001) and Malay AIS-DRESS (OR = 54, 95% CI = 6.6-442.9, P < 0.0001). Although the number of Indian-AIS patients was relatively small (n = 2), both were HLA-B*58:01 positive.
CONCLUSION: Our data suggest strong associations between HLA-B*58:01 and AIS in Malaysian population with Chinese and Malays ethnicity. The strong association was also observed in three different clinical phenotypes of AIS, mainly the AIS-SJS/TEN.
METHODS: A multiplex analytic microarray system was used to analyze the occurrence of antibodies to 10 different citrullinated peptides (filaggrin [fil307-324], vimentin [Vim2-17, Vim60-75], fibrinogen [Fibα563-583, Fibα580-600, Fibβ36-52, Fibβ62-81a, Fibβ62-81b], enolase [Eno5-21], and type II collagen [CitCII355-378]) in serum samples from 4,089 RA patients (1,231 Malaysian and 2,858 Swedish) and 827 healthy control subjects (249 Malaysian and 578 Swedish). The positive reaction threshold for each peptide was set separately for each population based on a specificity of 98%.
RESULTS: Distinct differences in the frequencies of 5 ACPA fine specificities (Vim60-75, Vim2-17, Fibβ62-81b, Eno5-21, and CitCII355-378) were found between the Malaysian and Swedish RA populations, despite a nearly identical percentage of patients in each population who were positive for anti-cyclic citrullinated peptide 2 antibodies. In Malaysian RA patients compared with Swedish RA patients, the frequencies of antibodies to Vim60-75 (54% versus 44%, corrected P [Pcorr ] = 1.06 × 10-8 ) and CitCII355-378 (17% versus 13%, Pcorr = 0.02) were significantly higher, while the frequencies of antibodies to Vim2-17 (25% versus 32%, Pcorr = 1.91 × 10-4 ), Fibβ62-81b (15% versus 30%, Pcorr = 2.47 × 10-22 ), and Eno5-21 (23% versus 50%, Pcorr = 3.64 × 10-57 ) were significantly lower.
CONCLUSION: Serum ACPA fine specificities differ between RA patients in different populations, although the total proportions of individuals positive for ACPAs are similar. Differing patterns of ACPA fine specificity could be attributed to variations in genetic and/or environmental factors.
AIMS: The aim of this study was to analyze the mutations in genes involved in CRC including MLH1, MSH2, KRAS, and APC genes.
METHODS: A total of 76 patients were recruited. We used the polymerase chain reaction-denaturing high-performance liquid chromatography for the detection of mutations in the mismatch repair (MMR) and APC genes and the PCR single-strand conformation polymorphism for screening of the KRAS gene mutations.
RESULTS: We identified 17 types of missense mutations in 38 out of 76 patients in our patients. Nine mutations were identified in the APC gene, five mutations were detected in the KRAS gene, and two mutations were identified in the MSH2 gene. Only one mutation was identified in MLH1. Out of these 17 mutations, eight mutations (47 %) were predicted to be pathogenic. Seven patients were identified with multiple mutations (3: MSH2 and KRAS, 1: KRAS and APC, 1: MLH1 and APC, 2: APC and APC).
CONCLUSIONS: We have established the PCR-DHPLC and PCR-SSCP for screening of mutations in CRC patients. This study has given a snapshot of the spectrum of mutations in the four genes that were analyzed. Mutation screening in patients and their family members will help in the early detection of CRC and hence will reduce mortality due to CRC.