Methods: A systematic search using predefined search terms in three scholarly databases, ScienceDirect, Google Scholar, and PubMed, was conducted. Original research articles published in the English language between 2012 and 2020 that reported renal outcomes associated with the use of non-insulin AD pharmacotherapy were eligible for inclusion. Review articles, meta-analysis studies, and conference proceedings were excluded. A study-specific data extraction form was designed to extract the author's name, country, publication year, study design, study population, objectives, key findings, and conclusions. A narrative review of the key findings that focused on renal outcomes and renal safety issues was conducted.
Results: Of the 18,872 results identified through the initial search, a total of 32 articles were included in this review. Of these, 18 of the included articles reported the renal outcomes of newer antidiabetic medications, eg, SGLT2 inhibitors and GLP-1 agonists. Eight studies focussed on the well-established antidiabetic medications, eg, metformin and sulphonylureas. The review reported three main types of the clinical impact of the prescribed AD on the renal outcomes: "renoprotective effects", "no additional risk" and "associated with a decline in renal parameters". Seventeen studies reported the renoprotective effects of AD, including SGLT2i studies (n=8), GLP1 studies (n=6), and DPP4i studies (n=3). The reported renoprotective effects included slowing down the GFR decline, improving albuminuria, and reducing renal adverse events. The "no additional risk" impact was reported in eight studies, including DPP4i studies (n=3), two SGLT2i studies (n=2), metformin studies (n=2), and one study involving pioglitazone. Furthermore, seven studies highlighted the "associated with a decline in renal parameters" effect. Of these, three involved SGLT2i, two with metformin, and one for each DPP4i and sulphonylurea.
Conclusion: More than half of the studies included in this review supported the renoprotective effects associated with the use of AD medications, particularly GLP-1A, SGLT2i, and some of the DPP4i. Further studies involving patients with various stages of chronic kidney disease (CKD) are required to compare AD medications' renal effects, particularly the newer agents.
RESULTS: Key biological processes linked to upregulated genes (n = 214) included 'response to endoplasmic reticulum stress' and 'lipid metabolism', and processes representing downregulated genes (n = 357) included 'DNA-conformation change' and 'cellular lipid metabolism'.
CONCLUSIONS: Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes.
OBJECTIVE: In the present study, we investigated the cytotoxic effect of 80% ethanol extract of P. amarus and its marker constituents (phyllanthin, hypophyllanthin, gallic acid, niranthin, greraniin, phyltetralin, isolintetralin, corilagin and ellagic acid) on HCT116 and their underlying mechanisms of action.
METHODS: Their antiproliferative and apoptotic effects on HCT 116 were performed using MTT assay and flow cytometric analysis, respectively, while caspases 3/7, 8 and 9 activities were examined using the colorimetric method. The expression of cleaved poly ADP ribose polymerase enzyme (PARP) and cytochrome c proteins was investigated by the immune-blot technique.
RESULTS AND DISCUSSION: HPLC and LC-MS/MS analyses demonstrated that the extract contained mainly lignans and polyphenols. The plant samples markedly suppressed the growth and expansion of HCT116 cells in a concentration- and time-dependent manner with no toxicity against normal human fibroblast CCD18 Co. P. amarus extract, phyllanthin and gallic acid induced mode of cell death primarily through apoptosis as confirmed by the exteriorization of phosphatidylserine. Caspases 3/7, 8, and 9 activities increased in a concentration-dependent manner following 24h treatment. The expressions of cleaved PARP (Asp 214) and cytochrome c were markedly upregulated.
CONCLUSION: P. amarus extract, phyllanthin and gallic acid exhibited an apoptotic effect on HCT116 cells through the caspases-dependent pathway.
Materials and Methods: This study was conducted using the livers of 18 mice fixed in 10% neutral-buffered formalin. A completely randomized design with a unidirectional pattern comprising six treatments was used in this study, with each treatment consisting of three replications. Treatment 0 was the negative control group infected with P. berghei, treatment 1 was the positive control group infected with P. berghei followed by chloroquine administration at a dose of 5 mg/kg BW, and treatments 2, 3, 4, and 5 were groups infected with P. berghei and administered Malacca leaf ethanolic extracts at doses of 100, 300, 600, and 1200 mg/kg BW, respectively. The extracts were administered orally using a gastric tube for 4 consecutive days. Mice were sacrificed on the 7th day and livers were collected for histopathological examination.
Results: Histopathological examination of the livers of mice infected with P. berghei demonstrated the presence of hemosiderin, hydropic degeneration, fat degeneration, necrosis, and megalocytosis. However, all these histopathological changes were reduced in the livers of P. berghei-infected mice treated with various doses of Malacca leaf ethanolic extract. The differences between the treatments were found be statistically significant (p<0.05).
Conclusion: Ethanolic extract of Malacca leaves has the potential to protect against liver damage in mice infected with P. berghei. The dose of 600 mg/kg BW was found to be the most effective compared with the doses of 100, 300, and 1200 mg/kg BW.