OBJECTIVE: Formulation of methacrylic acid-methyl methacrylate copolymer-coated capsules filled with chitosan nanoparticles loaded with rHuKGF for oral delivery.
METHODS: We report on chitosan nanoparticles (CNPs) with diameter < 200 nm, prepared by ionic gelation, loaded with rHuKGF and filled in methacrylic acid-methyl methacrylate copolymercoated capsules for oral delivery. The pharmacokinetic parameters were determined based on the serum levels of rHuKGF, following a single intravenous (IV) or oral dosages using a rabbit model. Furthermore, fluorescent microscope imaging was conducted to investigate the cellular uptake of the rhodamine-labelled rHuKGF-loaded nanoparticles. The proliferation effect of the formulation on FHs 74 Int cells was studied as well by MTT assay.
RESULTS: The mucoadhesive and absorption enhancement properties of chitosan and the protective effect of methacrylic acid-methyl methacrylate copolymer against rHuKGF release at the stomach, low pH, were combined to promote and ensure rHuKGF intestinal delivery and increase serum levels of rHuKGF. In addition, in-vitro studies revealed the protein bioactivity since rHuKGFloaded CNPs significantly increased the proliferation of FHs 74 Int cells.
CONCLUSION: The study revealed that oral administration of rHuKGF-loaded CNPs in methacrylic acid-methyl methacrylate copolymer-coated capsules is practically alternative to the IV administration since the absolute bioavailability of the orally administered rHuKGF-loaded CNPs, using the rabbit as animal model, was 69%. Fluorescent microscope imaging revealed that rhodaminelabelled rHuKGF-loaded CNPs were taken up by FHs 74 Int cells, after 6 hours' incubation time, followed by increase in the proliferation rate.
PRINCIPAL FINDINGS: The serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h), terminal phase half-life (13.6 h) and systemic bioavailability (41.9%) of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax=2 h and 1 h, respectively). Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m.=81.5%) compared to that of the phospholipase A2 (Fi.m.=68.6%) or cardiotoxin (Fi.m.=45.6%). The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions.
CONCLUSION/SIGNIFICANCE: Our results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its role as the principal toxin in systemic envenoming.