Displaying publications 121 - 140 of 372 in total

Abstract:
Sort:
  1. Williams PJ, Brodie JF
    Conserv Biol, 2023 Apr;37(2):e14014.
    PMID: 36178021 DOI: 10.1111/cobi.14014
    The loss of large animals due to overhunting and habitat loss potentially affects tropical tree populations and carbon cycling. Trees reliant on large-bodied seed dispersers are thought to be particularly negatively affected by defaunation. But besides seed dispersal, defaunation can also increase or decrease seed predation. It remains unclear how these different defaunation effects on early life stages ultimately affect tree population dynamics. We reviewed the literature on how tropical animal loss affects different plant life stages, and we conducted a meta-analysis of how defaunation affects seed predation. We used this information to parameterize models that altered matrix projection models from a suite of tree species to simulate defaunation-caused changes in seed dispersal and predation. We assessed how applying these defaunation effects affected population growth rates. On average, population-level effects of defaunation were negligible, suggesting that defaunation may not cause the massive reductions in forest carbon storage that have been predicted. In contrast to previous hypotheses, we did not detect an effect of seed size on changes in seed predation rates. The change in seed predation did not differ significantly between exclosure experiments and observational studies, although the results of observational studies were far more variable. Although defaunation surely affects certain tree taxa, species that benefit or are harmed by it and net changes in forest carbon storage cannot currently be predicted based on available data. Further research on how factors such as seed predation vary across tree species and defaunation scenarios is necessary for understanding cascading changes in species composition and diversity.
    Matched MeSH terms: Tropical Climate
  2. Rahman MA, Yusoff FM, Arshad A, Shamsudin MN, Amin SM
    ScientificWorldJournal, 2012;2012:938482.
    PMID: 23055824 DOI: 10.1100/2012/938482
    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.
    Matched MeSH terms: Tropical Climate
  3. Qaid A, Ossen DR
    Int J Biometeorol, 2015 Jun;59(6):657-77.
    PMID: 25108376 DOI: 10.1007/s00484-014-0878-5
    Asymmetrical street aspect ratios, i.e. different height-to-width (H1/W-H2/W) ratios, have not received much attention in the study of urban climates. Putrajaya Boulevard (northeast to southwest orientation) in Malaysia was selected to study the influence of six asymmetrical aspect ratio scenarios on the street microclimate using the Envi-met three-dimensional microclimate model (V3.1 Beta). Putrajaya Boulevard suffers from high surface and air temperature during the day due to the orientation, the low aspect ratio and the wide sky view factor. These issues are a common dilemma in many boulevards. Further, low and high symmetrical streets are incompatible with tropical regions as they offer conflicting properties during the day and at night. These scenarios are examined, therefore, to find asymmetrical streets which are able to reduce the impact of the day microclimate on boulevards, and as an alternative strategy fulfilling tropical day and night climatic conditions. Asymmetrical streets are better than low symmetrical streets in enhancing wind flow and blocking solar radiation, when tall buildings confront winds direction or solar altitudes. Therefore, mitigating heat islands or improving microclimates in asymmetrical streets based on tall buildings position which captures wind or caste shades. In northeast to southwest direction, aspect ratios of 0.8-2 reduce the morning microclimate and night heat islands yet the negative effects during the day are greater than the positive effects in the night. An aspect ratio of 2-0.8 reduces the temperature of surfaces by 10 to 14 °C and the air by 4.7 °C, recommended for enhancing boulevard microclimates and mitigating tropical heat islands.
    Matched MeSH terms: Tropical Climate*
  4. Ghani NA, Sulaiman J, Ismail Z, Chan XY, Yin WF, Chan KG
    Sensors (Basel), 2014;14(4):6463-73.
    PMID: 24721765 DOI: 10.3390/s140406463
    Two microbial isolates from a Malaysian shoreline were found to be capable of degrading N-acylhomoserine lactones. Both Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry and 18S rDNA phylogenetic analyses confirmed that these isolates are Rhodotorula mucilaginosa. Quorum quenching activities were detected by a series of bioassays and rapid resolution liquid chromatography analysis. The isolates were able to degrade various quorum sensing molecules namely N-hexanoyl-L-homoserine lactone (C6-HSL), N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Using a relactonisation assay to verify the quorum quenching mechanism, it is confirmed that Rh. mucilaginosa degrades the quorum sensing molecules via lactonase activity. To the best of our knowledge, this is the first documentation of the fact that Rh. mucilaginosa has activity against a broad range of AHLs namely C6-HSL, 3-oxo-C6-HSL and 3-hydroxy-C6-HSL.
    Matched MeSH terms: Tropical Climate*
  5. Ooi JL, Van Niel KP, Kendrick GA, Holmes KW
    PLoS One, 2014;9(1):e86782.
    PMID: 24497978 DOI: 10.1371/journal.pone.0086782
    Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures.
    Matched MeSH terms: Tropical Climate*
  6. Chong TM, Koh CL, Sam CK, Choo YM, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4846-59.
    PMID: 22666062 DOI: 10.3390/s120404846
    We report the production and degradation of quorum sensing N-acyl-homoserine lactones by bacteria isolated from Malaysian montane forest soil. Phylogenetic analysis indicated that these isolates clustered closely to the genera of Arthrobacter, Bacillus and Pseudomonas. Quorum quenching activity was detected in six isolates of these three genera by using a series of bioassays and rapid resolution liquid chromatography analysis. Biosensor screening and high resolution liquid chromatography-mass spectrometry analysis revealed the production of N-dodecanoyl-L-homoserine lactone (C12-HSL) by Pseudomonas frederiksbergensis (isolate BT9). In addition to degradation of a wide range of N-acyl-homoserine lactones, Arthrobacter and Pseudomonas spp. also degraded p-coumaroyl-homoserine lactone. To the best of our knowledge, this is the first documentation of Arthrobacter and Pseudomonas spp. capable of degrading p-coumaroyl-homoserine lactone and the production of C12-HSL by P. frederiksbergensis.
    Matched MeSH terms: Tropical Climate*
  7. Ng KH, McLean ID
    Semin Musculoskelet Radiol, 2011 Nov;15(5):441-5.
    PMID: 22081279 DOI: 10.1055/s-0031-1293490
    An estimated two thirds of the world's population is currently without access to diagnostic radiology services, and most of them live in resource-limited tropical regions with harsh environments. Most patients are diagnosed and treated in poorly equipped government-funded hospitals and clinics that have insufficiently trained staff and are barely operational. Any available imaging equipment is likely to be functioning suboptimally and be poorly maintained. The root of the problem is usually a lack of know-how and a quality culture, combined with insufficient basic equipment and infrastructure. Radiological imaging is an essential aspect of primary care and used in the critical diagnosis and management of trauma, tuberculosis, pneumonia, acquired immunodeficiency syndrome, cancer, and other respiratory and abdominal diseases. Considerations such as quality management and infrastructure, personnel, equipment, and radiation protection and safety are important to ensure the proper functioning and rational use of a diagnostic radiology facility in the tropics.
    Matched MeSH terms: Tropical Climate*
  8. Tsukahara Y, Oishi K, Hirooka H
    J Anim Sci, 2011 Dec;89(12):3890-907.
    PMID: 21705639 DOI: 10.2527/jas.2011-3997
    A deterministic simulation model was developed to estimate biological production efficiency and to evaluate goat crossbreeding systems under tropical conditions. The model involves 5 production systems: pure indigenous, first filial generations (F1), backcross (BC), composite breeds of F1 (CMP(F1)), and BC (CMP(BC)). The model first simulates growth, reproduction, lactation, and energy intakes of a doe and a kid on a 1-d time step at the individual level and thereafter the outputs are integrated into the herd dynamics program. The ability of the model to simulate individual performances was tested under a base situation. The simulation results represented daily BW changes, ME requirements, and milk yield and the estimates were within the range of published data. Two conventional goat production scenarios (an intensive milk production scenario and an integrated goat and oil palm production scenario) in Malaysia were examined. The simulation results of the intensive milk production scenario showed the greater production efficiency of the CMP(BC) and CMP(F1) systems and decreased production efficiency of the F1 and BC systems. The results of the integrated goat and oil palm production scenario showed that the production efficiency and stocking rate were greater for the indigenous goats than for the crossbreeding systems.
    Matched MeSH terms: Tropical Climate*
  9. Paynter S, Ware RS, Weinstein P, Williams G, Sly PD
    Lancet, 2010 Nov 27;376(9755):1804-5.
    PMID: 21111894 DOI: 10.1016/S0140-6736(10)62141-1
    Matched MeSH terms: Tropical Climate*
  10. Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, et al.
    Mar Pollut Bull, 2009 Feb;58(2):189-200.
    PMID: 19117577 DOI: 10.1016/j.marpolbul.2008.04.049
    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
    Matched MeSH terms: Tropical Climate*
  11. Wright SJ, Sanchez-Azofeifa GA, Portillo-Quintero C, Davies D
    Ecol Appl, 2007 Jul;17(5):1259-66.
    PMID: 17708206
    We used the global fire detection record provided by the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to determine the number of fires detected inside 823 tropical and subtropical moist forest reserves and for contiguous buffer areas 5, 10, and 15 km wide. The ratio of fire detection densities (detections per square kilometer) inside reserves to their contiguous buffer areas provided an index of reserve effectiveness. Fire detection density was significantly lower inside reserves than in paired, contiguous buffer areas but varied by five orders of magnitude among reserves. The buffer: reserve detection ratio varied by up to four orders of magnitude among reserves within a single country, and median values varied by three orders of magnitude among countries. Reserves tended to be least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. Countries with the most successful reserves include Costa Rica, Jamaica, Malaysia, and Taiwan and the Indonesian island of Java. Countries with the most problematic reserves include Cambodia, Guatemala, Paraguay, and Sierra Leone and the Indonesian portion of Borneo. We provide fire detection density for 3964 tropical and subtropical reserves and their buffer areas in the hope that these data will expedite further analyses that might lead to improved management of tropical reserves.
    Matched MeSH terms: Tropical Climate*
  12. Awad EA, Zulkifli I, Soleimani AF, Loh TC
    Poult Sci, 2015 Nov;94(11):2772-7.
    PMID: 26371331 DOI: 10.3382/ps/pev258
    A study was conducted to investigate the effects of feeding low-protein diets fortified with individual non-essential amino acids (NEAA) on growth performance, serum metabolites (uric acid, UA; triglycerides, TG; total protein, TP; and albumin, Alb), organ weight, breast yield, and abdominal fat weight in broiler chicks raised under the hot and humid tropical climate. Eight isocaloric (3,017 kcal/kg) experimental diets were formulated and fed to male broiler chicks from d 1-21 as follows: 1) 22.2% crude protein (CP) (positive control; PC); 2) 16.2% CP + mixture essential amino acids (EAA) to meet or exceed the National Research Council (1994) recommendations (negative control; NC); 3) NC + glycine (Gly) to equal the total glycine + serine level in the PC; diets 4 through 7 were obtained by supplementing NC diet with individual glutamic acid, proline, alanine, or aspartic acid (Glu, Pro, Ala, or Asp, respectively); 8) NC + NEAA (Gly + Glu + Pro + Ala + Asp) to equal the total level of these NEAA in the PC. Fortifying NC diet with mixture NEAA resulted in a similar growth performance as PC. However, fortification of low-CP diet with individual NEAA failed to improve body weight (BW) (P < 0.0001), feed intake (FI) (P = 0.0001), and feed conversion ratio (FCR) (P = 0.0001). Serum uric acid (UA) was lower (P = 0.0356) in NC birds and NC diet supplemented with individual NEAA birds, whereas serum triglyceride (TG) (P = 0.007) and relative weight of abdominal fat (P = 0.001) were higher in these birds. In conclusion, no single NEAA fortification may compensate the depressed growth performance attributed to a low-CP diet. However, fortification with Gly may improve FCR. There is a possibility that broilers raised under the hot and humid climate require higher Gly fortification than the level used in this study.
    Matched MeSH terms: Tropical Climate*
  13. Martin TE
    Science, 2015 Aug 28;349(6251):966-70.
    PMID: 26315435 DOI: 10.1126/science.aad1173
    Life history theory attempts to explain why species differ in offspring number and quality, growth rate, and parental effort. I show that unappreciated interactions of these traits in response to age-related mortality risk challenge traditional perspectives and explain life history evolution in songbirds. Counter to a long-standing paradigm, tropical songbirds grow at similar overall rates to temperate species but grow wings relatively faster. These growth tactics are favored by predation risk, both in and after leaving the nest, and are facilitated by greater provisioning of individual offspring by parents. Increased provisioning of individual offspring depends on partitioning effort among fewer young because of constraints on effort from adult and nest mortality. These growth and provisioning responses to mortality risk finally explain the conundrum of small clutch sizes of tropical birds.
    Matched MeSH terms: Tropical Climate*
  14. Usman MG, Rafii MY, Martini MY, Oladosu Y, Kashiani P
    J Sci Food Agric, 2017 Mar;97(4):1164-1171.
    PMID: 27290898 DOI: 10.1002/jsfa.7843
    BACKGROUND: Studies on genotypic and phenotypic correlations among characters of crop plants are useful in planning, evaluating and setting selection criteria for the desired characters in a breeding program. The present study aimed to estimate the phenotypic correlation coefficients among yield and yield attributed characters and to work out the direct and indirect effects of yield-related characters on yield per plant using path coefficient analysis. Twenty-six genotypes of chili pepper were laid out in a randomized complete block design with three replications.

    RESULTS: Yield per plant showed positive and highly significant (P ≤ 0.01) correlations with most of the characters studied at both the phenotypic and genotypic levels. By contrast, disease incidence and days to flowering showed a significant negative association with yield. Fruit weight and number of fruits exerted positive direct effect on yield and also had a positive and significant (P ≤ 0.01) correlation with yield per plant. However, fruit length showed a low negative direct effect with a strong and positive indirect effect through fruit weight on yield and had a positive and significant association with yield.

    CONCLUSION: Longer fruits, heavy fruits and a high number of fruits are variables that are related to higher yields of chili pepper under tropical conditions and hence could be used as a reliable indicator in indirect selection for yield. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Tropical Climate*
  15. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
    Matched MeSH terms: Tropical Climate*
  16. Dabinett JA, Reid K, James N
    Int J Sport Nutr Exerc Metab, 2001 Sep;11(3):334-48.
    PMID: 11591883
    The purpose of the present study was to develop a hydration strategy for use by female English field hockey players at the 1998 Commonwealth Games in Malaysia. An additional aim was to initiate the process of acclimation. Fifteen elite players, mean age (+/-SEM) 24.1 +/- 1.19 years, height 1.67 +/- 0.01 m, and body mass 62.8 +/- 1.76 kg, took part in a 5-day training camp immediately prior to departure for the Games. In order to develop the hydration strategy, training took place under similar environmental conditions to those to be experienced in Malaysia (i.e., 32 degrees C, 80% humidity). Acclimation training consisted of 30-50 min of either continuous, low intensity cycling or high intensity intermittent cycling, which more closely replicated the pattern of activity in field hockey. Body mass measures taken each morning, and pre and post training, together with urine color measures, were used to assess hydration status. Pre-loading with up to 1 L of a 3% carbohydrate-electrolyte solution or water immediately prior to acclimation training, as well as regular drinks throughout, ensured that players avoided significant dehydration, with percent body mass changes ranging from -0.34% to +4.24% post training. Furthermore, the protocol used was sufficient to initiate the process of acclimation as demonstrated by a significant reduction in exercising heart rate and core temperature at all time points by days 4 and 5. In conclusion, although labor intensive and time consuming, the camp was successful in developing a hydration strategy that players were able to utilize once at the Games.
    Matched MeSH terms: Tropical Climate*
  17. Duncan MT, Horvath SM
    PMID: 3396569
    Young sedentary adult males of Malay, Indian, and Chinese origin who had established continuous residence in tropical Malaysia and presumed to be naturally acclimatized to heat, were studied to evaluate their physiological responses to a standard heat stress test. The Malay and Indian races have evolved in hot and humid geographical zones, whereas the Chinese originated from a temperate area. Subjects exercised at 50% VO2max alternating 18 minutes walking and 2 min rest during a 2-h exposure to an ambient of 34.9 degrees C dry bulb and 32.1 degrees C wet bulb. Heart rates, core and skin temperatures, sweat rates, and oxygen uptakes were measured during the heat exposure. The subjects of Malay origin exhibited the least circulatory stress of the three ethnic groups. The data obtained on these long-term residents of a hot-wet climate and who were considered acclimatized to this environment were compared to experimental data obtained by other investigators and other ethnic groups.
    Matched MeSH terms: Tropical Climate*
  18. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al.
    PLoS Biol, 2008 Mar 04;6(3):e45.
    PMID: 18318600 DOI: 10.1371/journal.pbio.0060045
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.
    Matched MeSH terms: Tropical Climate*
  19. Seidler TG, Plotkin JB
    PLoS Biol, 2006 Oct;4(11):e344.
    PMID: 17048988
    Theories of tropical tree diversity emphasize dispersal limitation as a potential mechanism for separating species in space and reducing competitive exclusion. We compared the dispersal morphologies, fruit sizes, and spatial distributions of 561 tree species within a fully mapped, 50-hectare plot of primary tropical forest in peninsular Malaysia. We demonstrate here that the extent and scale of conspecific spatial aggregation is correlated with the mode of seed dispersal. This relationship holds for saplings as well as for mature trees. Phylogenetically independent contrasts confirm that the relationship between dispersal and spatial pattern is significant even after controlling for common ancestry among species. We found the same qualitative results for a 50-hectare tropical forest plot in Panama. Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests.
    Matched MeSH terms: Tropical Climate*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links