METHODS: Computational Fluid Dynamics (CFD) approach is used to simulate the airflow in a neonate, an infant and an adult in sedentary breathing conditions. The healthy CT scans are segmented using MIMICS 21.0 (Materialise, Ann arbor, MI). The patient-specific 3D airway models are analyzed for low Reynolds number flow using ANSYS FLUENT 2020 R2. The applicability of the Grid Convergence Index (GCI) for polyhedral mesh adopted in this work is also verified.
RESULTS: This study shows that the inferior meatus of neonates accounted for only 15% of the total airflow. This was in contrast to the infants and adults who experienced 49 and 31% of airflow at the inferior meatus region. Superior meatus experienced 25% of total flow which is more than normal for the neonate. The highest velocity of 1.8, 2.6 and 3.7 m/s was observed at the nasal valve region for neonates, infants and adults, respectively. The anterior portion of the nasal cavity experienced maximum wall shear stress with average values of 0.48, 0.25 and 0.58 Pa for the neonates, infants and adults.
CONCLUSIONS: The neonates have an underdeveloped nasal cavity which significantly affects their airway distribution. The absence of inferior meatus in the neonates has limited the flow through the inferior regions and resulted in uneven flow distribution.
METHODS: In our paper, we propose a real-time, lightweight liver segmentation model named G-MBRMD. Specifically, we employ a Transformer-based complex model as the teacher and a convolution-based lightweight model as the student. By introducing proposed multi-head mapping and boundary reconstruction strategies during the knowledge distillation process, Our method effectively guides the student model to gradually comprehend and master the global boundary processing capabilities of the complex teacher model, significantly enhancing the student model's segmentation performance without adding any computational complexity.
RESULTS: On the LITS dataset, we conducted rigorous comparative and ablation experiments, four key metrics were used for evaluation, including model size, inference speed, Dice coefficient, and HD95. Compared to other methods, our proposed model achieved an average Dice coefficient of 90.14±16.78%, with only 0.6 MB memory and 0.095 s inference speed for a single image on a standard CPU. Importantly, this approach improved the average Dice coefficient of the baseline student model by 1.64% without increasing computational complexity.
CONCLUSION: The results demonstrate that our method successfully realizes the unification of segmentation precision and lightness, and greatly enhances its potential for widespread application in practical settings.
METHODS: Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan® 500 phantom.
RESULTS: The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan® 500 phantom.
CONCLUSIONS: A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies.