METHODS: MyBFF@home intervention was a quasi-experimental study which involved 328 overweight and obese housewives aged 18-59 years old (Control group: 159, Intervention group: 169). Data of the control and intervention group (pre and post intervention who completed the body composition and blood pressure measurements were analysed. Body compositions were measured using the Body Impedance Analyser (InBody 720) and blood pressure (Systolic and Diastolic) was taken using the blood pressure monitoring device (Omron HEM 907) at baseline, 6 month and 12 month. Data analyses (Pearson's correlation test and ANOVA) were performed and analysed using SPSS Statistics for Windows, version 22.0.
RESULTS: Visceral fat area, fat mass and body fat percentage, were all significantly decreased in the intervention group compared to the control group after 6 month intervention (p
STUDY DESIGN: We assessed data from 6414 children aged 6-18 years, collected by the South East Asia Community Observatory. Child underweight, overweight, and obesity were expressed according to 3 internationally used BMI references: World Health Organization 2007, International Obesity Task Force 2012, and Centers for Disease Control and Prevention 2000. We assessed agreement in classification of anthropometric status among the references using Cohen's kappa statistic and estimated underweight, overweight, and obesity prevalence according to each reference using mixed effects Poisson regression.
RESULTS: There was poor to moderate agreement between references when classifying underweight, but generally good agreement when classifying overweight and obesity. Underweight, overweight, and obesity prevalence estimates generated using the 3 references were notably inconsistent. Overweight and obesity prevalence estimates were higher using the World Health Organization reference vs the other 2, and underweight prevalence was up to 8.5% higher and obesity prevalence was about 4% lower when using the International Obesity Task Force reference.
CONCLUSIONS: The choice of reference to express BMI may influence conclusions about child anthropometric status and malnutrition prevalence. This has implications regarding strategies for clinical management and public health interventions.
METHODS: This was a quasi-experimental study conducted in low-cost flats in Kuala Lumpur, Malaysia. A total of 255 overweight and obesity individuals aged between 18 to 59 years old were assigned to either the lifestyle intervention group (n = 169) or the usual care group (n = 146) over a period of 6 months. Individuals in the intervention group received 6 individual lifestyle counselling comprised of physical activity, diet counselling and self-monitoring components aimed to achieve at least 5% weight loss while individuals in the usual care group obtained six sessions of health care seminars from health care providers. These individuals were then followed-up for another 6 months without any intervention as part of maintenance period.
RESULTS: An intention-to-treat analysis of between-groups at 6-month of intervention (β, 95% CI) revealed greater changes in weight among intervention individuals' (- 1.09 kg vs. -0.99; p 0.05). Individuals in the intervention group showed a significant increase for skeletal muscle mass (0.13 kg) than those individuals in the control group (- 0.37 kg), p = 0.033, throughout the study period.
CONCLUSION: This study provides evidence that an overweight and obesity prevention program can be implemented in a community setting, with some reduction of several anthropometric and body composition parameters.
METHODS: We recruited one hundred and ninety four overweight and obese (BMI>27.5 kg/m2) employees from a local university. They were randomly allocated to either Group Support Lifestyle Modification (GSLiM) (intervention)(n = 97) or dietary counseling (comparison)(n = 97). The GSLIM activities included self monitoring, cognitive-behaviour sessions, exercise as well as dietary change advocacy, which were conducted through seminars and group sessions over 24 weeks. The comparison group was given dietary counselling once in 12 weeks. Both groups were followed up for additional 12 weeks to check for intervention effect sustenance. Anthropometric and biochemical parameters were measured at baseline, 12, 24 and 36 weeks; while dietary intake, physical activities, psychological measures and quality of life measured at baseline, 24 and 36 weeks. Data analysis was conducted using ANOVA repeated measures with intention to treat principle.
RESULTS: The participants were predominantly women with mean (standard deviation) age of 40.5 (9.3) years. A total of 19.6% of the participants in GSLiM achieved 6% weight loss compared to 4.1% in the comparison group (Risk Ratio 4.75; 95% CI: 1.68, 13.45). At 24 weeks, the retention rate was 83.5% for GSLiM and 82.5% for comparison group. GSLiM participants also achieved significant improvement in total weight self-efficacy score, negative emotions and physical discomfort subscales, MDPSS friend subscale and all domains in quality of life. Participants in the comparison group experienced reduction in negative self-thoughts.
CONCLUSION: The GSLiM programme proved to be more effective in achieving targeted weight loss, improving weight self-efficacy, friend social support, and quality of life compared to dietary counseling.
TRIAL REGISTRATION: Iranian Registry of Clinical Trials IRCT201104056127N1.
METHODS: This study used data from the 2015 National Health and Morbidity Survey (NHMS), a nationwide cross-sectional survey that implemented a two-stage stratified random sampling design. Respondents aged 18 years and above (n = 17,261) were included in the analysis. The short version of International Physical Activity Questionnaire (IPAQ) was administered to assess the respondents' PA levels. The respondents' height and weight were objectively measured and body mass index (BMI) was calculated. The respondents were categorized according to BMI as either normal-weight (18.5-24.9 kg/m2) or overweight/obese (≥ 25 kg/m2). Descriptive and complex sample logistic regression analyses were employed as appropriate.
RESULTS: Overall, approximately 1 in 2 respondents (51.2%) were overweight/obese, even though the majority (69.0%) reporting at least a moderate level of PA (total PA ≥ 10 MET-hours/week). In both normal-weight and overweight/obese groups, a significantly higher prevalence of high PA (total PA ≥ 50 MET-hours/week) was observed among men than women (p Overweight/obese men reported a significantly lower level of vigorous-intensity PA and total PA than normal-weight men (p overweight/obesity (Adjusted OR = 1.14; 95% CI: 1.01-1.30) compared to a high level of PA among men but not among women.
CONCLUSIONS: The levels of PA were inversely related to the risk of overweight/obesity in men but not in women. Programs designed to reduce overweight/obesity rates should encourage the practice of moderate- to vigorous-intensity PA. Future research should consider using longitudinal and prospective approaches that simultaneously measure dietary intake, PA and BMI among Malaysian adults to investigate the actual relationship between PA and overweight/obesity.
METHODS: We used data from health and demographic surveillance conducted by the South East Asia Community Observatory in Segamat, Malaysia. Analyses included 9207 individuals (4806 children, 2570 mothers and 1831 fathers). Child obesity was defined based on the World Health Organization 2007 reference. We assessed the relation between parental anthropometric (overweight, obesity and central obesity) and cardiometabolic (systolic hypertension, diastolic hypertension and hyperglycaemia) risk factors and child obesity, using mixed effects Poisson regression models with robust standard errors.
RESULTS: We found a high burden of overweight and obesity among children in this population (30% overweight or obese). Children of one or more obese parents had a 2-fold greater risk of being obese compared with children of non-obese parents. Sequential adjustment for parental and child characteristics did not materially affect estimates (fully adjusted relative risk for obesity in both parents: 2.39, 95% confidence interval: 1.82, 3.10, P
METHODS AND STUDY DESIGN: The data used for this analysis were from 1143 children, 6-12 years old, that participated in the South East Asian Nutrition Survey (SEANUTS). Physical activity (PA) was measured using pedometers for 2 consecutive days and was categorized low, moderate and high. Child nutritional status was categorized based on body mass index for age z-scores (BAZ) into normal weight (-2 SD ≤BAZ≤1 SD) or overweight (BAZ >1 SD). Energy intake was calculated from a one day 24 hour recall and compared to the Indonesian recommended dietary allowance (RDA) for energy.
RESULTS: Children with low PA had higher risk (ODDs 3.4, 95% CI: 2.0, 6.0) of being overweight compared to children who had high PA. Children with moderate PA and energy take >100% RDA had higher risk (ODDs 4.2, 95% CI 1.9, 9.3) of being overweight than children with high PA and energy intakes ≤100% RDA.
CONCLUSIONS: Low physical activity independently or moderate physical activity and high energy intake are risk factors for Indonesian children to get overweight. Program intervention such as increasing physical activity at school and home is needed to reduce overweight among children.
OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism.
DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study).
SETTING: General community.
PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study).
INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion.
RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05).
CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.
METHODS: We randomized 108 overweight and obese patients with T2D (46 M/62F; age 60 ± 10 years; HbA1c 8.07 ± 1.05%; weight 101.4 ± 21.1 kg and BMI 35.2 ± 7.7 kg/m2) into three groups. Group A met with RDN to develop an individualized eating plan. Group B met with RDN and followed a structured meal plan. Group C did similar to group B and received weekly phone support by RDN.
RESULTS: After 16 weeks, all three groups had a significant reduction of their energy intake compared to baseline. HbA1c did not change from baseline in group A, but decreased significantly in groups B (- 0.66%, 95% CI -1.03 to - 0.30) and C (- 0.61%, 95% CI -1.0 to - 0.23) (p value for difference among groups over time overweight and obese patients with T2D. It also reduces other important cardiovascular disease risk factors like body fat percentage and waist circumference.
TRIAL REGISTRATION: The trial was retrospectively registered at clinicaltrials.gov( NCT02520050 ).