Displaying publications 101 - 120 of 501 in total

Abstract:
Sort:
  1. MohanRaj, T., Kumar, K. Murugu Mohan, Kumar, Perumal
    MyJurnal
    Vegetable oil has become more attractive recently because of its environmental benefits and better
    quality exhaust emission. A well-known transesterification process made biodiesel, pungam seed oil was selected for biodiesel production. Pungam seed oil is non-edible oil, thus, food versus fuel conflict will not arise if this is used for biodiesel production. A maximum of 75% biodiesel was produced with 20% methanol in the presence of 0.5% sodium hydroxide. The experimental investigations were carried out in an engine that is coupled with an eddy current dynamometer. The engine is a single cylinder water-cooled, direct injection diesel engine developing a power output of 3.7 kW at 1500 rev/min. The crank angle encoder measured the engine speed, whereas the piezo electric sensors measured the cylinder pressure and the fuel injection pressure. The experimental investigations were carried out for bio-diesel and diesel and the results were compared. From the experimental results, it is concluded that the use of bio-diesel as an alternative fuel leads to significant reduction in emissions and improved performance of diesel engines. This paper discusses the production process of biodiesel from Pungam seed oil and its performance in the compression ignition engine.
    Matched MeSH terms: Seeds
  2. Zainal-Abidin RA, Abu-Bakar N, Sew YS, Simoh S, Mohamed-Hussein ZA
    Int J Genomics, 2019;2019:4168045.
    PMID: 31687375 DOI: 10.1155/2019/4168045
    Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
    Matched MeSH terms: Seeds
  3. Liu JH, Yong XH, Zhen Li, Du SF, Zhang ZW, Meng XF, et al.
    Sains Malaysiana, 2015;44:347-354.
    The effect of maternal mowing on seed traits of an invasive weed, Erigeron annuus, in farmland was discussed by
    comparing mowing plants with intact (no-mowing) plants. The maternal mowing effect resulted in the decrease of seed
    mass, achene size, pappus length and germination percentage and the increase of variation in achene size, pappus length,
    dispersal distance and germination non-uniformity. To some extent, the individuals suffered mowing might accelerate
    the environmental adaptation through the increase of these variations. Our study indicated the mean of mowing in
    farmland will restrain the growth and reproduction of weed E. annuus. However, it also increases the diversity of seeds
    through a more unequal provision to seeds that shares the risk and increases fitness to a wider range of heterogeneity
    of farmland condition.
    Matched MeSH terms: Seeds
  4. Biswash MR, Sharmin M, Rahman NMF, Farhat T, Siddique MA
    Sains Malaysiana, 2016;45:706-716.
    A field experiment was conducted from June to December, 2013 to study the genetic diversity of 15 modern T. Aman rice
    varieties of Bangladesh (Oryza sativa L.) with a view to assess the superior genotype in future hybridization program
    for developing new rice varieties that is suitable for the target environment. Analysis of variance for each trait showed
    significant differences among the varieties. High heritability associated with high genetic advance in percent of mean
    was observed for plant height and thousand seed weight which indicated that selection for these characters would be
    effective. Hence, thrust has to be given for these characters in future breeding program to improve the yield trait in rice.
    Multivariate analysis based on 10 agronomic characters indicated that the 15 varieties were grouped into four distant
    clusters. The inter cluster distance was maximum between cluster II and cluster IV. The highest intra-cluster distance was
    found in cluster IV. Based on positive value of vector 1 and vector 2, plant height and 1000-seed weight had maximum
    contribution towards genetic divergence. From the results, it can be concluded that the varieties BRRI dhan40, BRRI
    dhan44, BRRI dhan46, BRRI dhan49 and BINA dhan7 may be selected for future hybridization program.
    Matched MeSH terms: Seeds
  5. Jayanthi Antonisamy A, Marimuthu S, Malayandi S, Rajendran K, Lin YC, Andaluri G, et al.
    Environ Res, 2023 Jan 15;217:114758.
    PMID: 36400225 DOI: 10.1016/j.envres.2022.114758
    The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
    Matched MeSH terms: Seeds
  6. Rupani PF, Embrandiri A, Ibrahim MH, Ghole V, Lee CT, Abbaspour M
    Environ Sci Pollut Res Int, 2018 Dec;25(36):35805-35810.
    PMID: 29663297 DOI: 10.1007/s11356-018-1875-8
    Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.
    Matched MeSH terms: Seeds
  7. Farzinebrahimi R, Mat Taha R, Rashid KA, Ali Ahmed B, Danaee M, Rozali SE
    PMID: 27298625 DOI: 10.1155/2016/6429652
    Leaf, seed, and tuber explants of C. latifolia were inoculated on MS medium supplemented with various concentrations of BAP and IBA, alone or in combinations, to achieve in vitro plant regeneration. Subsequently, antioxidant and antibacterial activities were determined from in vitro and in vivo plant developed. No response was observed from seed culture on MS media with various concentrations of PGRs. The highest percentage of callus was observed on tuber explants (94%) and leaf explants (89%) when cultured on MS media supplemented with IBA in combination with BAP. A maximum of 88% shoots per tuber explant, with a mean number of shoots (8.8 ± 1.0), were obtained on MS medium supplemented with combinations of BAP and IBA (2.5 mg L(-1)). The best root induction (92%) and mean number (7.6 ± 0.5) from tuber explants were recorded on 2.5 mg L(-1) IBA alone supplemented to MS medium. The higher antioxidant content (80%) was observed from in vivo tuber. However, tuber part from the intact plant showed higher inhibition zone in antibacterial activity compared to other in vitro and in vivo tested parts.
    Matched MeSH terms: Seeds
  8. Tiwari GJ, Liu Q, Shreshtha P, Li Z, Rahman S
    BMC Plant Biol, 2016 08 31;16(1):189.
    PMID: 27581494 DOI: 10.1186/s12870-016-0881-6
    BACKGROUND: The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids. However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration in the novel HO genotype remains unexplored.

    RESULTS: Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO.

    CONCLUSION: Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.

    Matched MeSH terms: Seeds/genetics*; Seeds/growth & development; Seeds/metabolism
  9. Ngu MS, Thomson MJ, Bhuiyan MA, Ho C, Wickneswari R
    Genet. Mol. Res., 2014;13(4):9477-88.
    PMID: 25501158 DOI: 10.4238/2014.November.11.13
    Grain weight is a major component of rice grain yield and is controlled by quantitative trait loci. Previously, a rice grain weight quantitative trait locus (qGW6) was detected near marker RM587 on chromosome 6 in a backcross population (BC2F2) derived from a cross between Oryza rufipogon IRGC105491 and O. sativa cv. MR219. Using a BC2F5 population, qGW6 was validated and mapped to a region of 4.8 cM (1.2 Mb) in the interval between RM508 and RM588. Fine mapping using a series of BC4F3 near isogenic lines further narrowed the interval containing qGW6 to 88 kb between markers RM19268 and RM19271.1. According to the Duncan multiple range test, 8 BC4F4 near isogenic lines had significantly higher 100-grain weight (4.8 to 7.5% over MR219) than their recurrent parent, MR219 (P < 0.05). According to the rice genome automated annotation database, there are 20 predicted genes in the 88-kb target region, and 9 of them have known functions. Among the genes with known functions in the target region, in silico gene expression analysis showed that 9 were differentially expressed during the seed development stage(s) from gene expression series GSE6893; however, only 3 of them have known functions. These candidates provide targets for further characterization of qGW6, which will assist in understanding the genetic control of grain weight in rice.
    Matched MeSH terms: Seeds/anatomy & histology*; Seeds/genetics*
  10. Ting NC, Jansen J, Nagappan J, Ishak Z, Chin CW, Tan SG, et al.
    PLoS One, 2013;8(1):e53076.
    PMID: 23382832 DOI: 10.1371/journal.pone.0053076
    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm.
    Matched MeSH terms: Seeds/genetics*; Seeds/growth & development
  11. Tajul Islam Chowdhury M, Salim Mian M, Taher Mia MA, Rafii MY, Latif MA
    Genet. Mol. Res., 2015 Dec 28;14(4):18140-52.
    PMID: 26782461 DOI: 10.4238/2015.December.23.1
    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings.
    Matched MeSH terms: Seeds/genetics; Seeds/microbiology
  12. Cho EG, Hor YL, Kim HH, Rao VR, Engelmann F
    Cryo Letters, 2002 Sep-Oct;23(5):317-24.
    PMID: 12447491
    This paper investigates the importance of loading and treatment with a vitrification solution on the survival of Citrus madurensis embryonic axes cryopreserved using a vitrification protocol. Among the seven different loading solutions tested, the solution containing 2 M glycerol + 0.4 M sucrose was the most efficient. Of the six vitrification solutions tested, the PVS2 vitrification solution, applied for 20 min at 25 degree C or for 60 min at 0 degree C, ensured the highest survival. A three-step vitrification protocol, involving the treatment of embryonic axes at 0 degree C with half strength PVS2 solution for 20 min then with full strength PVS2 for an additional 40 min was more efficient than a two-step protocol that involved treatment of axes directly with full strength PVS2 solution for 60 min. After rapid immersion in liquid nitrogen, rapid rewarming, unloading in a 1.2 M sucrose solution for 20 min, culture on solid medium with 0.3 M sucrose for 1 day and growth recovery for 4 weeks on standard medium, survival of C. madurensis embryonic axes reached 85 % following the three-step process, compared with 70 % for the two-step process.
    Matched MeSH terms: Seeds/drug effects*; Seeds/growth & development
  13. Nakagawa M, Itioka T, Momose K, Yumoto T, Komai F, Morimoto K, et al.
    Bull. Entomol. Res., 2003 Oct;93(5):455-66.
    PMID: 14658448
    Insect seed predators of 24 dipterocarp species (including the genera ot Dipterocarpus, Dryobalanops and Shorea) and five species belonging to the Moraceae, Myrtaceae, Celastraceae and Sapotaceae were investigated. In a tropical lowland dipterocarp forest in Sarawak, Malaysia, these trees produces seeds irregularly by intensely during general flowering and seeding events in 1996 and/or 1998. Dipterocarp seeds were preyed on by 51 insect species (11 families), which were roughly classified into three taxonomic groups: smaller moths (Trotricidae, Pyralidae, Crambidae, Immidae, Sesiidae, and Cosmopterigidae), scolytids (Scolydae) and weevils (Curdulionidae, Apionidae, Anthribidae, and Attelabidae). Although the host-specificity of invertebrate seed predators has been assumed to be high in tropical forests, it was found that the diet ranges of some insect predators were relatively wide and overlapped one another. Most seed predators that were collected in both study years changes their diets between general flowering and seeding events. The results of cluster analyses based on the number of adult of each predator species that emerged from 100 seeds of each tree species, suggested that the dominant species was not consistent, alternating between the two years.
    Matched MeSH terms: Seeds/parasitology*; Seeds/physiology
  14. Seidler TG, Plotkin JB
    PLoS Biol, 2006 Oct;4(11):e344.
    PMID: 17048988
    Theories of tropical tree diversity emphasize dispersal limitation as a potential mechanism for separating species in space and reducing competitive exclusion. We compared the dispersal morphologies, fruit sizes, and spatial distributions of 561 tree species within a fully mapped, 50-hectare plot of primary tropical forest in peninsular Malaysia. We demonstrate here that the extent and scale of conspecific spatial aggregation is correlated with the mode of seed dispersal. This relationship holds for saplings as well as for mature trees. Phylogenetically independent contrasts confirm that the relationship between dispersal and spatial pattern is significant even after controlling for common ancestry among species. We found the same qualitative results for a 50-hectare tropical forest plot in Panama. Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests.
    Matched MeSH terms: Seeds/growth & development; Seeds/physiology*
  15. Giwa Ibrahim S, Karim R, Saari N, Wan Abdullah WZ, Zawawi N, Ab Razak AF, et al.
    J Food Sci, 2019 Aug;84(8):2015-2023.
    PMID: 31364175 DOI: 10.1111/1750-3841.14714
    Kenaf belongs to the family Malvaceae noted for their economic and horticultural importance. Kenaf seed is a valuable component of kenaf plant. For several years, it has been primarily used as a cordage crop and secondarily as a livestock feed. The potential for using kenaf seeds as a source of food-based products has not been fully exploited. Consumers are becoming more interested in naturally healthy plant-based food products. Kenaf seed, the future crop with a rich source of essential nutrients and an excellent source of phytocompounds, might serve suitable roles in the production of value-added plant-based foods. At present kenaf seed and its value-added components have not been effectively utilized for both their nutritional and functional properties as either ingredient or major constituent of food products. This review focuses on the possible food applications of kenaf seed and its value-added components based on their nutritional composition and functional properties available in literature, with the purpose of providing an overview on the possible food applications of this underutilized seed. The review focuses on a brief introduction on kenaf plant, nutritional function, lipids and proteins composition and food applications of the seed. The review elaborately discusses the seed in terms of; bioactive components, antioxidants enrichment of wheat bread, antimicrobial agents, as edible flour, as edible oil and a source of protein in food system. The review closes with discussion on other possible food applications of kenaf seed. The need for food scientists and technologists to exploit this natural agricultural product as a value-added food ingredient is of great significance and is emphasized.
    Matched MeSH terms: Seeds/metabolism; Seeds/chemistry
  16. Ariffin N, Abdullah R, Rashdan Muad M, Lourdes J, Emran NA, Ismail MR, et al.
    Plasmid, 2011 Sep;66(3):136-43.
    PMID: 21827784 DOI: 10.1016/j.plasmid.2011.07.002
    Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is a polyhydroxyalkanoate (PHA) bioplastic group with thermoplastic properties is thus high in quality and can be degradable. PHBV can be produced by bacteria, but the process is not economically competitive with polymers produced from petrochemicals. To overcome this problem, research on transgenic plants has been carried out as one of the solutions to produce PHBV in economically sound alternative manner. Four different genes encoded with the enzymes necessary to catalyze PHBV are bktB, phaB, phaC and tdcB. All the genes came with modified CaMV 35S promoters (except for the tdcB gene, which was promoted by the native CaMV 35S promoter), nos terminator sequences and plastid sequences in order to target the genes into the plastids. Subcloning resulted in the generation of two different orientations of the tdcB, pLMIN (left) and pRMIN (right), both 17.557 and 19.967 kb in sizes. Both plasmids were transformed in immature embryos (IE) of oil palm via Agrobacterium tumefaciens. Assays of GUS were performed on one-week-old calli and 90% of the calli turned completely blue. This preliminary test showed positive results of integration. Six-months-old calli were harvested and RNA of the calli were isolated. RT-PCR was used to confirm the transient expression of PHBV transgenes in the calli. The bands were 258, 260, 315 and 200 bp in size for bktB, phaB, phaC and tdcB transgenes respectively. The data obtained showed that the bktB, phaB, phaC and tdcB genes were successfully integrated and expressed in the oil palm genome.
    Matched MeSH terms: Seeds/genetics; Seeds/metabolism
  17. Norlia M, Jinap S, Nor-Khaizura MAR, Son R, Chin CK, Sardjono
    Int J Food Microbiol, 2018 Oct 03;282:9-15.
    PMID: 29885975 DOI: 10.1016/j.ijfoodmicro.2018.05.030
    Peanuts are widely consumed as the main ingredient in many local dishes in Malaysia. However, the tropical climate in Malaysia (high temperature and humidity) favours the growth of fungi from Aspergillus section Flavi, especially during storage. Most of the species from this section, such as A. flavus, A. parasiticus and A. nomius, are natural producers of aflatoxins. Precise identification of local isolates and information regarding their ability to produce aflatoxins are very important to evaluate the safety of food marketed in Malaysia. Therefore, this study aimed to identify and characterize the aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi in peanuts and peanut-based products. A polyphasic approach, consisting of morphological and chemical characterizations was applied to 128 isolates originating from raw peanuts and peanut-based products. On the basis of morphological characters, 127 positively identified as Aspergillus flavus, and the other as A. nomius. Chemical characterization revealed six chemotype profiles which indicates diversity of toxigenic potential. About 58.6%, 68.5%, and 100% of the isolates are positive for aflatoxins, cyclopiazonic acid and aspergillic acid productions respectively. The majority of the isolates originating from raw peanut samples (64.8%) were aflatoxigenic, while those from peanut-based products were less toxigenic (39.1%). The precise identification of these species may help in developing control strategies for aflatoxigenic fungi and aflatoxin contamination in peanuts, especially during storage. These findings also highlight the possibility of the co-occurrence of other toxins, which could increase the potential toxic effects of peanuts.
    Matched MeSH terms: Seeds/microbiology; Seeds/chemistry
  18. Bagchi R, Philipson CD, Slade EM, Hector A, Phillips S, Villanueva JF, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3246-55.
    PMID: 22006965 DOI: 10.1098/rstb.2011.0034
    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.
    Matched MeSH terms: Seeds/growth & development; Seeds/physiology*
  19. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
    Matched MeSH terms: Seeds/genetics; Seeds/metabolism*
  20. Yap LV, Noor NM, Clyde MM, Chin HF
    Cryo Letters, 2011 May-Jun;32(3):188-96.
    PMID: 21766148
    The effects of sucrose preculture duration and loading treatment on tolerance of Garcinia cowa shoot tips to cryopreservation using the PVS2 vitrification solution were investigated. Ultrastructural changes in meristematic cells at the end of the preculture and loading steps were followed in an attempt to understand the effects of these treatments on structural changes in cell membranes and organelles. Increasing preculture duration on 0.3 M sucrose medium from 0 to 3 days enhanced tolerance to PVS2 solution from 5.6 percent (no preculture) to 49.2 percent (3-day preculture). However, no survival was observed after cryopreservation. Examination of meristematic cells by transmission electron microscopy revealed the progressive accumulation of an electron-dense substance in line with increasing exposure durations to 0.3 M sucrose preculture. Treatment with a loading solution (2 M glycerol + 0.4 M sucrose) decreased tolerance of shoot tips to PVS2 vitrification solution and had a deleterious effect on the ultrastructure of G. cowa meristematic cells. This study suggests that G. cowa meristematic cells may lose their structural integrity due to exposure to glycerol present in the loading solution at a 2 M concentration, either due to its high osmotic potential, or due to its cytotoxicity.
    Matched MeSH terms: Seeds/cytology*; Seeds/ultrastructure
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links