METHODS: EEP was obtained by maceration with absolute ethanol, then it was concentrated in rotaevaporator up to complete evaporation of the solvent. The crude extract was fractionated with hexane, ethyl acetate, chloroform and methanol and they were subjected to phytochemical screening and total phenolic compounds. Antioxidant activity of EEP and fractions was done by means of the 2,2-diphenyl-1-picryhydrazyl (DPPH) method. Biomarkers of red propolis were identified by LC-Orbitrap-FTMS. To assess cytotoxic activity of the extract, cells were exposed to EEP over 72 h. Cell viability was assessed by means of MTT assay. The percentage of cell growth inhibition (IC50) was analysed by means of non-linear regression, and the absorbance values of the various investigated concentrations were subjected to one-factor analysis of variance (ANOVA) followed by Tukey's or Tamhane's tests (α = 0.05).
RESULTS: The results obtained using phytochemical screening and LC-Orbitrap-FTMS indicated the presence of phlobaphene tannins, catechins, chalcones, aurones, flavonones, flavonols, xanthones, pentacyclic triterpenoids and guttiferones in Brazilian red propolis. EEP and its hexane, chloroform and ethyl acetate fractions obtained by liquid-liquid partitioning exhibited satisfactory antioxidant percentages. EEP (IC50 cell lines tested when compared to negative control.
CONCLUSIONS: C-Orbitrap-FTMS was useful to establish the chemical profile of the red propolis. Brazilian red propolis has antioxidant properties and decreases substantially the percentage of cell survival of human tumour cells; thus, it has potential to serve as an anticancer drug.
MATERIALS AND METHODS: The STIM1 effect was assessed via dicersubstrate siRNA-mediated STIM1 knockdown. The effect of STIM1 knockdown on the expression of AKT and MAPK pathway-related genes and reactive oxygen species (ROS) generation-related genes was tested using real-time polymerase chain reaction. Cellular functions, including ROS generation, cell proliferation, and colony formation, were also evaluated following STIM1 knockdown.
RESULTS: The findings revealed that STIM1 knockdown reduced intracellular ROS levels via downregulation of NOX2 and PKC. These findings were associated with the downregulation of AKT, KRAS, MAPK, and CMYC. BCL2 was also downregulated, while BAX was upregulated following STIM1 knockdown. Furthermore, STIM1 knockdown reduced THP-1 cell proliferation and colony formation.
CONCLUSION: This study has demonstrated the role of STIM1 in promoting AML cell proliferation and survival through enhanced ROS generation and regulation of AKT/MAPK-related pathways. These findings may help establish STIM1 as a potential therapeutic target for AML treatment.