Displaying publications 101 - 112 of 112 in total

Abstract:
Sort:
  1. Tan W, Liew JWK, Selvarajoo S, Lim XY, Foo CJ, Refai WF, et al.
    Acta Trop, 2020 Apr;204:105330.
    PMID: 31917959 DOI: 10.1016/j.actatropica.2020.105330
    The public health burden of dengue is most likely under reported. Current dengue control measures only considered symptomatic dengue transmission. Hence, there is a paucity of information on the epidemiology of inapparent dengue. This study reports that many people have been unknowingly exposed to dengue infection. Almost 10% and 70% of individuals without any history of dengue infection and living in a dengue hotspot, in Selangor, Malaysia, were dengue IgM and IgG positive respectively. When dengue-positive mosquitoes were detected in the hotspot, 11 (6.3%) of the 174 individuals tested were found to have dengue viremia, of which 10 were asymptomatic. Besides, upon detection of a dengue-infected mosquito, transmission was already widespread. In a clinical setting, it appears that people living with dengue patients have been exposed to dengue, whether asymptomatic or symptomatic. They can either have circulating viral RNA and/or presence of NS1 antigen. It is also possible that they are dengue seropositive. Collectively, the results indicate that actions taken to control dengue transmission after the first report of dengue cases may be already too late. The current study also revealed challenges in diagnosing clinically inapparent dengue in hyperendemic settings. There is no one best method for diagnosing inapparent dengue. This study demonstrates empirical evidence of inapparent dengue in different settings. Early dengue surveillance in the mosquito population and active serological/virological surveillance in humans can go hand in hand. More studies are required to investigate the epidemiology, seroprevalence, diagnostics, and control of inapparent dengue. It is also crucial to educate the public, health staff and medical professionals on asymptomatic dengue and to propagate awareness, which is important for controlling transmission.
  2. Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, et al.
    Elife, 2019 10 22;8.
    PMID: 31638575 DOI: 10.7554/eLife.47602
    Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.
  3. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

  4. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

  5. Goh XT, Lim YA, Vythilingam I, Chew CH, Lee PC, Ngui R, et al.
    Malar J, 2013 Jul 31;12:264.
    PMID: 23902626 DOI: 10.1186/1475-2875-12-264
    BACKGROUND: Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex™).

    METHODS: A total of 189 whole blood samples were collected from Telupid Health Clinic, Sabah, Malaysia, from 2008 to 2011. All patients who participated in the study were microscopically malaria positive before recruitment. Complete demographic details and haematological profiles were obtained from 85 patients (13 females and 72 males). Identification of Plasmodium species was conducted using PlasmoNex™ targeting the 18S ssu rRNA gene.

    RESULTS: A total of 178 samples were positive for Plasmodium species by using PlasmoNex™. Plasmodium falciparum was identified in 68 samples (38.2%) followed by 64 cases (36.0%) of Plasmodium vivax, 42 (23.6%) cases of P. knowlesi, two (1.1%) cases of Plasmodium malariae and two (1.1%) mixed-species infections (i e, P. vivax/P. falciparum). Thirty-five PlasmoNex™ positive P. knowlesi samples were misdiagnosed as P. malariae by microscopy. Plasmodium knowlesi was detected in all four districts of Sandakan division with the highest incidence in the Kinabatangan district. Thrombocytopaenia and anaemia showed to be the most frequent malaria-associated haematological complications in this study.

    CONCLUSIONS: The discovery of P. knowlesi in Sandakan division showed that prospective studies on the epidemiological risk factors and transmission dynamics of P. knowlesi in these areas are crucial in order to develop strategies for effective malaria control. The availability of advanced diagnostic tool PlasmoNex™ enhanced the accuracy and accelerated the speed in the diagnosis of malaria.

  6. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

  7. Selvarajoo S, Liew JWK, Tan W, Lim XY, Refai WF, Zaki RA, et al.
    Sci Rep, 2020 Jun 12;10(1):9534.
    PMID: 32533017 DOI: 10.1038/s41598-020-66212-5
    Dengue has become a global public health problem. Despite reactive efforts by the government in Malaysia, the dengue cases are on the increase. Adequate knowledge, positive attitude and correct practice for dengue control are essential to stamp out the disease. Hence, this study aims to assess the factors associated with dengue knowledge, attitude and practice (KAP), as well as the association with dengue IgM and IgG seropositivity. A community-based cross-sectional study was conducted in a closed, dengue endemic area with multi-storey dwellings . Five hundred individuals (aged 18 years and above) were approached for pre-tested KAP and seroprevalences assessment. The study showed only half of the total participants have good knowledge (50.7%) but they had insufficient knowledge about dengue during pregnancy. 53.2% of people had poor attitude and 50.2% reported poor practice for dengue control. Out of 85 respondents who agreed to participate in the dengue seroprevalence study, 74.1% (n = 63) were positive for dengue IgG and 7.1% (n = 6) were positive for dengue IgM. Among all sociodemographic variable, race is the only independent predicator for all KAP levels (P 
  8. Yap NJ, Hossain H, Nada-Raja T, Ngui R, Muslim A, Hoh BP, et al.
    Emerg Infect Dis, 2021 08;27(8):2187-2191.
    PMID: 34287122 DOI: 10.3201/eid2708.204502
    We detected the simian malaria parasites Plasmodium knowlesi, P. cynomolgi, P. inui, P. coatneyi, P. inui-like, and P. simiovale among forest fringe-living indigenous communities from various locations in Malaysia. Our findings underscore the importance of using molecular tools to identify newly emergent malaria parasites in humans.
  9. Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, et al.
    Parasit Vectors, 2014;7:436.
    PMID: 25223878 DOI: 10.1186/1756-3305-7-436
    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria.
  10. Azman IK, Chan YF, Chua CL, Abd Mutalib ZA, Dass SC, Gill BS, et al.
    PLoS Negl Trop Dis, 2024 Oct;18(10):e0012632.
    PMID: 39480893 DOI: 10.1371/journal.pntd.0012632
    BACKGROUND: In 2008-2010, Malaysia experienced a nationwide chikungunya virus (CHIKV) outbreak caused by the Indian Ocean lineage E1-226V (valine) variant, adapted to Aedes albopictus. In 2017-2022, transition to an E1-226A (alanine) variant occurred. Ae. albopictus prevails in rural areas, where most cases occurred during the E1-226V outbreak, while Ae. aegypti dominates urban areas. The shift in circulating CHIKV variants from E1-226V to E1-226A (2009-2022) was hypothesized to result in a transition from rural to urban CHIKV distribution, driven by differences in Ae. aegypti vector competence for the two variants. This study aimed to: (1) map the spatiotemporal spread of CHIKV cases in Malaysia between 2009-2022; and (2) compare replication of E1-226A and E1-226V variants in the midguts and head/thoraxes of Ae. aegypti.

    METHODOLOGY/PRINCIPAL FINDINGS: Spatiotemporal analysis of national notified CHIKV case addresses was performed. Between 2009-2022, 12,446 CHIKV cases were reported, with peaks in 2009 and 2020, and a significant shift from predominantly rural cases in 2009-2011 (85.1% rural), to urban areas in 2017-2022 (86.1% urban; p<0.0001). Two Ae. aegypti strains, field-collected MC1 and laboratory Kuala Lumpur (KL) strains, were fed infectious blood containing constructed CHIKV clones, pCMV-p2020A (E1-226A) and pCMV-p2020V (E1-226V) to measure CHIKV replication by real-time PCR and/or virus titration. The pCMV-p2020A clone replicated better in Ae. aegypti cell line Aag2 and showed higher replication, infection and dissemination efficiency in both Ae. aegypti strains, compared to pCMV-p2020V.

    CONCLUSIONS/SIGNIFICANCE: This study revealed that a change in circulating CHIKV variants can be associated with changes in vector competence and outbreak epidemiology. Continued genomic surveillance of arboviruses is important.

  11. Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, et al.
    Parasit Vectors, 2016 Apr 28;9:242.
    PMID: 27125995 DOI: 10.1186/s13071-016-1527-0
    BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

    METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class.

    RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

    CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.

  12. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links