Displaying publications 101 - 120 of 126 in total

Abstract:
Sort:
  1. Bhadola P, Chaudhary V, Markandan K, Talreja RK, Aggarwal S, Nigam K, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116646.
    PMID: 37481054 DOI: 10.1016/j.envres.2023.116646
    The mutating SARS-CoV-2 necessitates gauging the role of airborne particulate matter in the COVID-19 outbreak for designing area-specific regulation modalities based on the environmental state-of-affair. To scheme the protocols, the hotspots of air pollutants such as PM2.5, PM10, NH3, NO, NO2, SO2, and and environmental factors including relative humidity (RH), and temperature, along with COVID-19 cases and mortality from January 2020 till December 2020 from 29 different ground monitoring stations spanning Delhi, are mapped. Spearman correlation coefficients show a positive relationship between SARS-COV-2 with particulate matter (PM2.5 with r > 0.36 and PM10 with r > 0.31 and p-value <0·001). Besides, SARS-COV-2 transmission showed a substantial correlation with NH3 (r = 0.41), NO2 (r = 0.36), and NO (r = 0.35) with a p-value <0.001, which is highly indicative of their role in SARS-CoV-2 transmission. These outcomes are associated with the source of PM and its constituent trace elements to understand their overtone with COVID-19. This strongly validates temporal and spatial variation in COVID-19 dependence on air pollutants as well as on environmental factors. Besides, the bottlenecks of missing latent data, monotonous dependence of variables, and the role air pollutants with secondary environmental variables are discussed. The analysis set the foundation for strategizing regional-based modalities considering environmental variables (i.e., pollutant concentration, relative humidity, temperature) as well as urban and transportation planning for efficient control and handling of future public health emergencies.
  2. Hebbale AM, Kumar M, Soudagar MEM, Ahamad T, Kalam MA, Mubarak NM, et al.
    Sci Rep, 2023 Jul 04;13(1):10778.
    PMID: 37402883 DOI: 10.1038/s41598-023-37991-4
    A typical ferrite/martensitic heat-resistant steel (T91) is widely used in reheaters, superheaters and power stations. Cr3C2-NiCr-based composite coatings are known for wear-resistant coatings at elevated temperature applications. The current work compares the microstructural studies of 75 wt% Cr3C2- 25 wt% NiCr-based composite clads developed through laser and microwave energy on a T91 steel substrate. The developed clads of both processes were characterized through a field emission scanning electron microscope (FE-SEM) attached with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and assessment of Vickers microhardness. The Cr3C2-NiCr based clads of both processes revealed better metallurgical bonding with the chosen substrate. The microstructure of the developed laser clad shows a distinctive dense solidified structure, with a rich Ni phase occupying interdendritic spaces. In the case of microwave clad, the hard chromium carbide particles consistently dispersed within the soft nickel matrix. EDS study evidenced that the cell boundaries are lined with chromium where Fe and Ni were found inside the cells. The X-ray phase analysis of both the processes evidenced the common presence of phases like chromium carbides (Cr7C3, Cr3C2, Cr23C6), Iron Nickel (FeNi3) and chromium-nickel (Cr3Ni2, CrNi), despite these phases iron carbides (Fe7C3) are observed in the developed microwave clads. The homogeneous distributions of such carbides in the developed clad structure of both processes indicated higher hardness. The typical microhardness of the laser-clad (1142 ± 65HV) was about 22% higher than the microwave clad (940 ± 42 HV). Using a ball-on-plate test, the study analyzed microwave and laser-clad samples' wear behavior. Laser-cladding samples showed superior wear resistance due to hard carbide elements. At the same time, microwave-clad samples experienced more surface damage and material loss due to micro-cutting, loosening, and fatigue-induced fracture.
  3. Hussain S, Javed W, Tajammal A, Khalid M, Rasool N, Riaz M, et al.
    ACS Omega, 2023 May 16;8(19):16600-16611.
    PMID: 37214690 DOI: 10.1021/acsomega.2c06785
    Current studies were performed to investigate the phytochemistry, synergistic antibacterial, antioxidant, and hemolytic activities of ethanolic and aqueous extracts of Azadirachta indica (EA and WA) and Cymbopogon citratus (EC and WC) leaves. Fourier transform infrared data verified the existence of alcoholic, carboxylic, aldehydic, phenyl, and bromo moieties in plant leaves. The ethanolic extracts (EA and EC) were significantly richer in phenolics and flavonoids as compared to the aqueous extracts (WA and WC). The ethanolic extract of C. citratus (EC) contained higher concentrations of caffeic acid (1.432 mg/g), synapic acid (6.743 mg/g), and benzoic acid (7.431 mg/g) as compared to all other extracts, whereas chlorogenic acid (0.311 mg/g) was present only in the aqueous extract of A. indica (WA). Food preservative properties of C. citratus can be due to the presence of benzoic acid (7.431 mg/g). -Gas chromatography-mass spectrometry analysis demonstrated the presence of 36 and 23 compounds in A. indica and C. citratus leaves, respectively. Inductively coupled plasma analysis was used to determine the concentration of 26 metals (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Sr, V, Zn, Zr, Ti); the metal concentrations were higher in aqueous extracts as compared to the ethanolic extracts. The extracts were generally richer in calcium (3000-7858 ppm), potassium (13662-53,750 ppm), and sodium (3181-8445 ppm) and hence can be used in food supplements as a source of these metals. Antioxidant potential (DDPH method) of C. citratus ethanolic extract was the highest (74.50 ± 0.66%), whereas it was the lowest (32.22 ± 0.28%) for the aqueous extract of A. indica. Synergistic inhibition of bacteria (Staphylococcus aureus and Escherichia coli) was observed when the aqueous extracts of both the plants were mixed together in certain ratios (v/v). The highest antibacterial potential was exhibited by the pure extract of C. citratus, which was even higher than that of the standard drug (ciprofloxacin). The plant extracts and their mixtures were more active against S. aureus as compared to E. coli. No toxic hemolytic effects were observed for the investigated extracts indicating their safe medicinal uses for human beings.
  4. Suen JW, Elumalai NK, Debnath S, Mubarak NM, Lim CI, Reddy Moola M, et al.
    Molecules, 2023 Jul 04;28(13).
    PMID: 37446854 DOI: 10.3390/molecules28135192
    Ionogels are hybrid materials comprising an ionic liquid confined within a polymer matrix. They have garnered significant interest due to their unique properties, such as high ionic conductivity, mechanical stability, and wide electrochemical stability. These properties make ionogels suitable for various applications, including energy storage devices, sensors, and solar cells. However, optimizing the electrochemical performance of ionogels remains a challenge, as the relationship between specific capacitance, ionic conductivity, and electrolyte solution concentration is yet to be fully understood. In this study, we investigate the impact of electrolyte solution concentration on the electrochemical properties of ionogels to identify the correlation for enhanced performance. Our findings demonstrate a clear relationship between the specific capacitance and ionic conductivity of ionogels, which depends on the availability of mobile ions. The reduced number of ions at low electrolyte solution concentrations leads to decreased ionic conductivity and specific capacitance due to the scarcity of a double layer, constraining charge storage capacity. However, at a 31 vol% electrolyte solution concentration, an ample quantity of ions becomes accessible, resulting in increased ionic conductivity and specific capacitance, reaching maximum values of 58 ± 1.48 μS/cm and 45.74 F/g, respectively. Furthermore, the synthesized ionogel demonstrates a wide electrochemical stability of 3.5 V, enabling diverse practical applications. This study provides valuable insights into determining the optimal electrolyte solution concentration for enhancing ionogel electrochemical performance for energy applications. It highlights the impact of ion pairs and aggregates on ion mobility within ionogels, subsequently affecting their resultant electrochemical properties.
  5. Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al.
    BMC Complement Med Ther, 2021 Jul 01;21(1):183.
    PMID: 34210310 DOI: 10.1186/s12906-021-03358-3
    BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation.

    METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.

    RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.

    CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.

  6. Agudosi ES, Abdullah EC, Numan A, Mubarak NM, Aid SR, Benages-Vilau R, et al.
    Sci Rep, 2020 Jul 08;10(1):11214.
    PMID: 32641769 DOI: 10.1038/s41598-020-68067-2
    Electrochemical stability of energy storage devices is one of their major concerns. Polymeric binders are generally used to enhance the stability of the electrode, but the electrochemical performance of the device is compromised due to the poor conductivity of the binders. Herein, 3D binder-free electrode based on nickel oxide deposited on graphene (G-NiO) was fabricated by a simple two-step method. First, graphene was deposited on nickel foam via atmospheric pressure chemical vapour deposition followed by electrodeposition of NiO. The structural and morphological analyses of the fabricated G-NiO electrode were conducted through Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS). XRD and Raman results confirmed the successful growth of high-quality graphene on nickel foam. FESEM images revealed the sheet and urchin-like morphology of the graphene and NiO, respectively. The electrochemical performance of the fabricated electrode was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in aqueous solution at room temperature. The G-NiO binder-free electrode exhibited a specific capacity of ≈ 243 C g-1 at 3 mV s-1 in a three-electrode cell. A two-electrode configuration of G-NiO//activated charcoal was fabricated to form a hybrid device (supercapattery) that operated in a stable potential window of 1.4 V. The energy density and power density of the asymmetric device measured at a current density of 0.2 A g-1 were estimated to be 47.3 W h kg-1 and 140 W kg-1, respectively. Additionally, the fabricated supercapattery showed high cyclic stability with 98.7% retention of specific capacity after 5,000 cycles. Thus, the proposed fabrication technique is highly suitable for large scale production of highly stable and binder-free electrodes for electrochemical energy storage devices.
  7. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, et al.
    Elife, 2020 Sep 02;9.
    PMID: 32876566 DOI: 10.7554/eLife.57869
    HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
  8. Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, et al.
    PMID: 36243900 DOI: 10.1080/02648725.2022.2127070
    Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
  9. Mahmoud T, Yagan J, Hasan A, Gheith OA, Mostafa M, Rida S, et al.
    Clin Transplant, 2023 Dec;37(12):e15144.
    PMID: 37755118 DOI: 10.1111/ctr.15144
    INTRODUCTION: Cardiovascular and renal complications define the outcomes of diabetic kidney transplant recipients (KTRs). The new diabetes medications have changed the management of diabetes. However, transplant physicians are still reluctant to use sodium-glucose cotransporter 2 inhibitors (SGLT2i) and Glucagon-like peptide-1 receptor agonists (GLP-1RA) post kidney transplantation due to fear of drug related complications and lack of established guidelines.

    PATIENTS AND METHODS: We collected 1-year follow-up data from records of 98 diabetic KTRs on SGLT2I, 41 on GLP- 1RA and 70 on standard-of-care medicines. Patients were more than 3 months post-transplant with a minimum estimated glomerular filtration rate (eGFR) of 25 ml/min/1.73 m2 . Demographic data were similar except for a slightly lower HbA1c in the control group and higher albuminuria in SGLT2i group.

    RESULTS: HbA1c dropped significantly by .4% in both SGLT2i and GLP-1RA compared to .05% in the control group. A significant decrease in BMI by .32 in SGLT2i and .34 in GLP-1RA was observed compared to an increase by .015 in control group. A tendency for better eGFR in study groups was observed but was non-significant except for the SGLT2i group with an eGFR above 90 (p = .0135). The usual dip in eGFR was observed in the SGLT2i group at 1-3 months. Albuminuria was significantly reduced in both study groups. Adverse events were minimal with comparable safety in all groups.

    CONCLUSION: The use of SGLT2i and GLP-1RA appears to be effective and safe in diabetic KTRs with good outcomes. Randomized control trials are required to confirm these findings and establish guidelines.

  10. Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, et al.
    Biosens Bioelectron, 2023 Jan 15;220:114847.
    PMID: 36335709 DOI: 10.1016/j.bios.2022.114847
    Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.
  11. Uddin I, Awan HH, Khalid M, Khan S, Akbar S, Sarker MR, et al.
    Sci Rep, 2024 Sep 06;14(1):20819.
    PMID: 39242695 DOI: 10.1038/s41598-024-71568-z
    RNA modifications play an important role in actively controlling recently created formation in cellular regulation mechanisms, which link them to gene expression and protein. The RNA modifications have numerous alterations, presenting broad glimpses of RNA's operations and character. The modification process by the TET enzyme oxidation is the crucial change associated with cytosine hydroxymethylation. The effect of CR is an alteration in specific biochemical ways of the organism, such as gene expression and epigenetic alterations. Traditional laboratory systems that identify 5-hydroxymethylcytosine (5hmC) samples are expensive and time-consuming compared to other methods. To address this challenge, the paper proposed XGB5hmC, a machine learning algorithm based on a robust gradient boosting algorithm (XGBoost), with different residue based formulation methods to identify 5hmC samples. Their results were amalgamated, and six different frequency residue based encoding features were fused to form a hybrid vector in order to enhance model discrimination capabilities. In addition, the proposed model incorporates SHAP (Shapley Additive Explanations) based feature selection to demonstrate model interpretability by highlighting the high contributory features. Among the applied machine learning algorithms, the XGBoost ensemble model using the tenfold cross-validation test achieved improved results than existing state-of-the-art models. Our model reported an accuracy of 89.97%, sensitivity of 87.78%, specificity of 94.45%, F1-score of 0.8934%, and MCC of 0.8764%. This study highlights the potential to provide valuable insights for enhancing medical assessment and treatment protocols, representing a significant advancement in RNA modification analysis.
  12. Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al.
    Fitoterapia, 2010 Oct;81(7):855-8.
    PMID: 20546845 DOI: 10.1016/j.fitote.2010.05.009
    The anti-inflammatory activity of zerumbone (1), a natural cyclic sesquiterpene isolated from Zingiber zerumbet Smith was investigated using carrageenan-induced paw edema and cotton pellet-induced granuloma tissue formation test in mice. It was demonstrated that intraperitoneal administration of 1 at a dose of 5, 10, 50 and 100 mg/kg produced significant dose-dependent inhibition of paw edema induced by carrageenan. It was also demonstrated that 1 at similar doses significantly suppressed granulomatous tissue formation in cotton pellet-induced granuloma test.
  13. Mohamad AS, Akhtar MN, Zakaria ZA, Perimal EK, Khalid S, Mohd PA, et al.
    Eur J Pharmacol, 2010 Nov 25;647(1-3):103-9.
    PMID: 20826146 DOI: 10.1016/j.ejphar.2010.08.030
    The present study examined the potential antinociceptive activity of flavokawin B (6'-hydroxy-2',4'-dimethoxychalcone), a synthetic chalcone using chemical- and thermal-induced nociception models in mice. It was demonstrated that flavokawin B (FKB; 0.3, 1, 3 and 10 mg/kg) administered via both oral (p.o.) and intraperitoneal (i.p.) routes produced significant and dose-dependent inhibition in the abdominal constrictions induced by acetic acid, with the i.p. route producing antinociception of approximately 7-fold more potent than the p.o. route. It was also demonstrated that FKB produced significant inhibition in the two phases of the formalin-induced paw licking test. In addition, the same treatment of flavokawin B (FKB) exhibited significant inhibition of the neurogenic nociceptive induced by intraplantar injections of glutamate and capsaicin. Likewise, this compound also induced a significant increase in the response latency period to thermal stimuli in the hot plate test and its antinociceptive effect was not related to muscle relaxant or sedative action. Moreover, the antinociception effect of the FKB in the formalin-induced paw licking test and the hot plate test was not affected by pretreatment of non-selective opioid receptor antagonist, naloxone. The present results indicate that FKB produced pronounced antinociception effect against both chemical and thermal models of pain in mice that exhibited both peripheral and central analgesic activity.
  14. Kumar MR, Yeap SK, Lee HC, Mohamad NE, Nazirul Mubin Aziz M, Khalid M, et al.
    Antioxidants (Basel), 2021 Jun 10;10(6).
    PMID: 34200854 DOI: 10.3390/antiox10060940
    Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma cells. Here, the antioxidant potentials of the six different kefir water samples were analysed by total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assays, whereas the anti-apoptotic activity on hydrogen peroxide (H2O2) induced SH-SY5Y cells was examined using MTT, AO/PI double staining, and PI/Annexin V-FITC assays. The surface and internal morphological features of SH-SY5Y cells were studied using scanning and transmission electron microscopy. The results indicate that Kefir B showed the higher TPC (1.96 ± 0.54 µg GAE/µL), TFC (1.09 ± 0.02 µg CAT eq/µL), FRAP (19.68 ± 0.11 mM FRAP eq/50 µL), and DPPH (0.45 ± 0.06 mg/mL) activities compared to the other kefir samples. The MTT and PI/Annexin V-FITC assays showed that Kefir B pre-treatment at 10 mg/mL for 48 h resulted in greater cytoprotection (97.04%), and a significantly lower percentage of necrotic cells (7.79%), respectively. The Kefir B pre-treatment also resulted in greater protection to cytoplasmic and cytoskeleton inclusion, along with the conservation of the surface morphological features and the overall integrity of SH-SY5Y cells. Our findings indicate that the anti-oxidative, anti-apoptosis, and neuroprotective effects of kefir were mediated via the upregulation of SOD and catalase, as well as the modulation of apoptotic genes (Tp73, Bax, and Bcl-2).
  15. Mehmood A, Khan FSA, Mubarak NM, Mazari SA, Jatoi AS, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54477-54496.
    PMID: 34424475 DOI: 10.1007/s11356-021-16045-0
    Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.
  16. Abdel-Sattar OE, Allam RM, Al-Abd AM, El-Halawany AM, El-Desoky AM, Mohamed SO, et al.
    ACS Omega, 2023 Aug 08;8(31):28563-28576.
    PMID: 37576627 DOI: 10.1021/acsomega.3c02953
    Doxorubicin (DOX) is a cornerstone chemotherapeutic agent for the treatment of several malignancies such as breast cancer; however, its activity is ameliorated by the development of a resistant phenotype. Phyllanthus species have been studied previously for their potential anticancer properties. The current work is aimed to study the potential cytotoxicity and chemomodulatory effects of hypophyllanthin (PN4) and phyllanthin (PN5) isolated from Phyllanthus niruri to DOX against the adriamycin multidrug-resistant breast cancer cells (MCF-7ADR) and elucidate their mechanism of action. The major compounds of the active methylene chloride fraction were isolated and assessed for their potential cytotoxicity and chemomodulatory effects on DOX against naïve (MCF-7) and resistant breast (MCF-7ADR) cancer cells. The mechanism of action of both compounds in terms of their impacts on programmed/non-programmed cell death (apoptosis and autophagy/necrosis), cell cycle progression/arrest, and tumor cell migration/invasion was investigated. Both compounds PN4 and PN5 showed a moderate but similar potency against MCF-7 as well as MCF-7ADR and significantly synergized DOX-induced anticancer properties against MCF-7ADR. The chemomodulatory effect of both compounds to DOX was found to be via potentiating DOX-induced cell cycle interference and apoptosis induction. It was found that PN4 and PN5 blocked the apoptosis-escape autophagy pathway in MCF-7ADR. On the molecular level, both compounds interfered with SIRT1 expression and consequently suppressed Akt phosphorylation, and PN5 blocked apoptosis escape. Furthermore, PN4 and PN5 showed promising antimigratory and anti-invasive effects against MCF-7ADR, as confirmed by suppression of N-cadherin/β-catenin expression. In conclusion, for the first time, hypophyllanthin and phyllanthin isolated from P. niruri showed promising chemomodulatory effects to the DOX-induced chemotherapeutic activity against MCF-7ADR. Both compounds significantly synergized DOX-induced anticancer properties against MCF-7ADR. This enhanced activity was explained by further promoting DOX-induced apoptosis and suppressing the apoptosis-escape autophagy feature of the resistant breast cancer cells. Both compounds (hypophyllanthin and phyllanthin) interfered with the SIRT1/Akt pathway and suppressed the N-cadherin/β-catenin axis, confirming the observed antiproliferative, cytotoxic, and anti-invasive effects of hypophyllanthin and phyllanthin.
  17. Raheem I, Mubarak NM, Karri RR, Solangi NH, Jatoi AS, Mazari SA, et al.
    Chemosphere, 2023 Jan;311(Pt 2):137056.
    PMID: 36332734 DOI: 10.1016/j.chemosphere.2022.137056
    Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.
  18. Mehmood A, Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):19563-19588.
    PMID: 33651297 DOI: 10.1007/s11356-021-12589-3
    Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.
  19. Lee SY, Tan YH, Lau SY, Mubarak NM, Tan YY, Tan IS, et al.
    Environ Res, 2024 Jun 27;259:119448.
    PMID: 38942255 DOI: 10.1016/j.envres.2024.119448
    Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.
  20. Aljabali AAA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh KM, Zoubi MSA, et al.
    Cancers (Basel), 2020 Nov 30;12(12).
    PMID: 33266353 DOI: 10.3390/cancers12123587
    The authors wish to make the following corrections to this paper [...].
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links