Displaying publications 81 - 100 of 344 in total

Abstract:
Sort:
  1. Wan Khalid WEF, Mat Arip MN, Jasmani L, Lee YH
    Sensors (Basel), 2019 Jun 18;19(12).
    PMID: 31216625 DOI: 10.3390/s19122726
    A new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10-4-9 × 10-4 M with a limit of detection (LOD) of 1 × 10-4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC-rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC-rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.
    Matched MeSH terms: Limit of Detection
  2. Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M
    Int J Biol Macromol, 2019 Apr 01;126:1213-1222.
    PMID: 30611809 DOI: 10.1016/j.ijbiomac.2019.01.001
    A novel and sensitive electrochemical cholesterol biosensor was developed based on immobilization cholesterol oxidase (ChOx) on the polyaniline/crystalline nanocellulose/ionic liquid modified Screen-Printed Electrode (PANi/CNC/IL/SPE). A thin layer of ionic liquid (IL) was spin coated on the modified electrode to enhance the electron transferring. Crystalline nanocellulose was prepared from Semantan bamboo (Gigantochloa scortechinii) via acid hydrolysis and it was used to synthesize a nanocomposite of PANi/CNC via in situ oxidative polymerization process. FESEM and TEM images showed high porosity of the nanostructure with no phase separation, revealing the homogenous polymerization of the monomer on the surface of the crystalline cellulose. Research surface methodology (RSM) was carried out to optimize the parameters and conditions leading to maximize the performance and sensitivity of biosensors. The PANi/CNC/IL/GLU/ChOx-modified electrode showed a high sensitivity value of 35.19 μA mM/cm-2 at optimized conditions. The proposed biosensor exhibited a dynamic linear range of 1 μM to 12 mM (R2 = 0.99083) with the low Limit of Detection of 0.48 μM for cholesterol determination. An acceptable reproducibility (RSDs ≤3.76%) and repeatability (RSDs ≤3.31%) with the minimal interference from the coexisting electroactive compounds such as ascorbic acid, uric acid and glucose was observed for proposed biosensor.
    Matched MeSH terms: Limit of Detection
  3. Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A
    J Adv Vet Anim Res, 2019 Sep;6(3):300-307.
    PMID: 31583226 DOI: 10.5455/javar.2019.f348
    Objective: The objective of this study was to employ real-time or quantitative polymerase chain reaction (q-PCR) using novel species specific primer (SSP) targeting on mitochondrial cytochrome-b of wild boar species (CYTBWB2-wb) gene for the identification of non-halal meat of wild boar meat (WBM) in meatball products.

    Materials and Methods: The novel SSP of CYTBWB2-wb was designed by our group using PRIMERQUEST and NCBI software. DNA was extracted using propanol-chloroform-isoamyl alcohol method. The designed SSP was further subjected for validation protocols using DNA isolated from fresh meat and from meatball, which include specificity test, determination of efficiency, limit of detection and repeatability, and application of developed method for analysis of commercially meatball samples.

    Results: The results showed that CYTBWB2-wb was specific to wild boar species against other animal species with optimized annealing temperature of 59°C. The efficiency of q-PCR obtained was 91.9% which is acceptable according to the Codex Allimentarius Commission (2010). DNA, with as low as 5 pg/μl, could be detected using q-PCR with primer of CYTBWB2-wb. The developed method was also used for DNA analysis extracted from meatball samples commercially available.

    Conclusion: q-PCR using CYTBWB2-wb primers targeting on mitochondrial cytochrome-b gene (forward: CGG TTC CCT CTT AGG CAT TT; Reverse: GGA TGA ACA GGC AGA TGA AGA) can be fruitfully used for the analysis of WBM in commercial meatball samples.

    Matched MeSH terms: Limit of Detection
  4. Abulaiti A, Salai A, Sun X, Yibulayin W, Gao Y, Gopinath SCB, et al.
    PMID: 33576539 DOI: 10.1002/bab.2122
    Non-small cell lung cancer (NSCLC) incited by epidermal growth factor receptor (EGFR) mutation makes up ∼85% of lung cancer diagnosed and death cases worldwide. The presented study introduced an alternative approach in detecting EGFR mutation using nano-silica integrated with polydimethylsiloxane (PDMS) polymer on interdigitated electrode (IDE) sensor. A 400 μm gap-sized aluminum IDE was modified with nano-polymer layer, which was made up of silica nanoparticles and PDMS polymer. IDE and PDMS-coated IDE (PDMS/IDE) were imaged using electron microscopes that reveals its smooth and ideal sensor morphology. The nano-silica-integrated PDMS/IDE surface was immobilized with EGFR probe and target to specify the lung cancer detection. The sensor specificity was justified through the insignificant current readouts with one-base mismatch and noncomplementary targets. The sensitivity of nano-silica-integrated PDMS/IDE was examined with mutant target spiked in human serum, where the resulting current affirms the detection of EGFR mutation. Based on the slope of the calibration curve, the sensitivity of nano-silica-integrated PDMS/IDE was 2.24E-9 A M-1 . The sensor recognizes EGFR mutation lowest at 1 aM complementary mutant target; however, the detection limit obtained based on 3σ calculation is 10 aM with regression value of 0.97.
    Matched MeSH terms: Limit of Detection
  5. Chang W, Zhao J, Liu L, Xing X, Zhang C, Meng H, et al.
    J Anal Methods Chem, 2021;2021:6661799.
    PMID: 33688447 DOI: 10.1155/2021/6661799
    Nanotechnology is playing a major role in the field of medical diagnosis, in particular with the biosensor and bioimaging. It improves the performance of the desired system dramatically by displaying higher selectivity and sensitivity. Carbon nanomaterial, gold nanostructure, magnetite nanoparticle, and silica substrate are the most popular nanomaterials greatly contributed to make the affordable and effective biosensor at low-cost. This research work is introducing a new sensing strategy with graphene oxide-constructed triangular electrodes to diagnose Alzheimer's disease (AD). MicroRNA-137 (miRNA-137) was found as a suitable biomarker for AD, and the sensing method was established here to detect miRNA-137 on the complementary sequence. To enhance the immobilization of capture miRNA-137, gold nanostar (GNS) was conjugated with capture miRNA and immobilized on the GO-modified surface through an amine linker. This immobilization process enhanced the hybridization of the target and reaches the detection limit at 10 fM with the sensitivity of 1 fM on the linear curve with a regression coefficient of 0.9038. Further control sequences of miRNA-21 and single and triple base mismatched miRNA-137 did not show a significant response in current changes, indicating the specific miRNA-137 detection for diagnosing AD.
    Matched MeSH terms: Limit of Detection
  6. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    AMB Express, 2017 Dec;7(1):41.
    PMID: 28205102 DOI: 10.1186/s13568-017-0339-8
    An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10(-8)-2.0 × 10(-13) M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
    Matched MeSH terms: Limit of Detection
  7. Nuraznee Mashodi, Nurul Yani Rahim, Norhayati Muhammad, Saliza Asman
    MyJurnal
    Extra virgin olive oil (EVOO) is categorized as expensive oil due to high-quality nutritional value. Unfortunately, EVOO is easily adulterated with other low-quality edible oils. Therefore, this study was done to differentiate and analyze the adulteration of EVOO with other edible oils using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The study was used several edible oils included canola oil, corn oil, sunflower oil, and soybean oil as an adulterant for EVOO. The adulterant EVOO samples were prepared by mixing with dissimilar concentrations of the solely edible oils (20 %, 40 %, 60 % and 80 % (v/v)). The main functional groups of EVOO and other edible oils are O-H, C-H, C=C and C=O groups were assigned around 3500 cm-1, 2925 cm-1, 3006 cm-1 and 1745 cm-1 wavenumbers, respectively. From the comparison of EVOO and other adulterant edibles oil spectra, it showed that the EVOO has the lowest absorbance intensity at around 3006 cm-1 represented double bond which is closely related to the composition of oil sample. The adulteration of EVOO was evaluated by analysing the changes in the absorbance based on the linear regression analysis graph of the bands at 3006 and 2925 cm-1 and the limit of detection (LOD) was measured. The graph of A3008/A2925 with good relative coefficients (R2) and lower LOD is more favourable than the linear regression graph of A3006 versus percentage of edible oils added in EVOO. This study showed that ATR-FTIR spectroscopy is a convenient tool for analysing the adulteration of EVOO.
    Matched MeSH terms: Limit of Detection
  8. Saisahas K, Soleh A, Promsuwan K, Phonchai A, Mohamed Sadiq NS, Teoh WK, et al.
    J Pharm Biomed Anal, 2021 Feb 08;198:113958.
    PMID: 33662759 DOI: 10.1016/j.jpba.2021.113958
    A portable electrochemical sensor was developed to determine xylazine in spiked beverages by adsorptive stripping voltammetry (AdSV). The sensor was based on a graphene nanoplatelets-modified screen-printed carbon electrode (GNPs/SPCE). The electrochemical behavior of xylazine at the GNPs/SPCE was an adsorption-controlled irreversible oxidation reaction. The loading of graphene nanoplatelets (GNPs) on the modified SPCE, electrolyte pH, and AdSV accumulation potential and time were optimized. Under optimal conditions, the GNPs/SPCE provided high sensitivity, linear ranges of 0.4-6.0 mg L-1 (r = 0.997) and 6.0-80.0 mg L-1 (r = 0.998) with a detection limit of 0.1 mg L-1 and a quantitation limit of 0.4 mg L-1. Repeatability was good. The accuracy of the proposed sensor was investigated by spiking six beverage samples at 1.0, 5.0, and 10.0 mg L-1. The recoveries from this method ranged from 80.8 ± 0.2-108.1 ± 0.3 %, indicating the good accuracy of the developed sensor. This portable electrochemical sensor can be used to screen for xylazine in beverage samples as evidence in cases of sexual assault or robbery.
    Matched MeSH terms: Limit of Detection
  9. Akkbik M, Assim ZB, Ahmad FB
    Int J Anal Chem, 2011;2011:858153.
    PMID: 21760792 DOI: 10.1155/2011/858153
    An HPLC method with ultraviolet-visible spectrophotometry detection has been optimized and validated for the simultaneous determination of phenolic compounds, such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as antioxidants, and octyl methyl cinnamate (OMC) as UVB-filter in several personal care products. The dynamic range was between 1 to 250 mg/L with relative standard deviation less than 0.25% (n = 4). Limits of detection for BHA, BHT, and OMC were 0.196, 0.170, and 0.478 mg/L, respectively. While limits of quantification for BHA, BHT, and OMC were 0.593, 0.515, and 1.448 mg/L, respectively. The recovery for BHA, BHT, and OMC was ranged from 92.1-105.9%, 83.2-108.9%, and 87.3-103.7%, respectively. The concentration ranges of BHA, BHT, and OMC in 12 commercial personal care samples were 0.13-4.85, 0.16-2.30, and 0.12-65.5 mg/g, respectively. The concentrations of phenolic compounds in these personal care samples were below than maximum allowable concentration in personal care formulation, that is, 0.0004-10 mg/g, 0.002-5 mg/g, and up to 100 mg/g for BHA, BHT, and OMC, respectively.
    Matched MeSH terms: Limit of Detection
  10. Semail NF, Noordin SS, Keyon ASA, Waras MN, Saad B, Kamaruzaman S, et al.
    Biomed Chromatogr, 2021 May;35(5):e5050.
    PMID: 33314228 DOI: 10.1002/bmc.5050
    A simple and sensitive preconcentration strategy using sequential electrokinetic and hydrodynamic injection modes in micellar electrokinetic chromatography with diode array detection was developed and applied for the separation and determination of anticancer agent, 5-fluorouracil and its metabolite, 5-fluoro-2'-deoxyuridine, in human plasma. Sequential injection modes with increased analyte loading capacity using the anionic pseudo-stationary phase facilitated collection of the dispersed neutral and charged analytes into narrow zones and improved sensitivity. Several important parameters affecting sample enrichment performance were evaluated and optimized in this study. Under the optimized experimental conditions, 614- and 643-fold and 782- and 803-fold sensitivity improvement were obtained for 5-fluorouracil and its metabolite when compared with normal hydrodynamic and electrokinetic injection, respectively. The method has good linearity (1-1,000 ng/ml) with acceptable coefficient of determination (r2  > 0.993), low limits of detection (0.11-0.14 ng/ml) and satisfactory analyte relative recovery (97.4-99.7%) with relative standard deviations of 4.6-9.3% (n = 6). Validation results as well as the application to analysis of human plasma samples from cancer patients demonstrate the applicability of the proposed method to clinical studies.
    Matched MeSH terms: Limit of Detection
  11. Ahmad Hazmi AS, Abd Maurad Z, Mohd Noor MA, Nek Mat Din NSM, Idris Z
    J Sep Sci, 2021 Apr;44(7):1471-1481.
    PMID: 33522105 DOI: 10.1002/jssc.202000929
    Ethylene glycol is a super commodity chemical and it has vital roles in various applications. Its co-production with other chemicals, such as ethylene carbonate and glycerol carbonate, has promised cheaper production cost. Its quantification presents a challenge as its contaminants, such as ethylene carbonate, produce a signal-reducing effect in flame ionized detector. The aim of this study is to evaluate external standard to quantify the composition of glycol mixture. Measurement system analysis was employed on the external standard method. Reliability of the external standard is statistically significant with low p-values, excellent capability indices, and high F-values. The external standard is found to have remarkable precision and trueness as both capability indices are mirroring each other. Furthermore, the capability analysis has a strong correlation with quality measurement. Based on capability indices, the limit of detection is recommended at S/N = 25 and the limit of quantification is recommended at S/N = 100 for a reliable measurement. A high degree of reliability is achieved coherently as almost all uncertainties of coefficients of variations are less than 5%. The established method was validated and successfully applied to glycol mixture at azeotropic distillation pilot plant.
    Matched MeSH terms: Limit of Detection
  12. Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM
    PMID: 33835514 DOI: 10.1002/bab.2164
    Artificial intelligence of things (AIoT) has become a potential tool for use in a wide range of fields, and its use is expanding in interdisciplinary sciences. On the other hand, in a clinical scenario, human blood-clotting disease (Royal disease) detection has been considered an urgent issue that has to be solved. This study uses AIoT with deep long short-term memory networks for biosensing application and analyzes the potent clinical target, human blood clotting factor IX, by its aptamer/antibody as the probe on the microscaled fingers and gaps of the interdigitated electrode. The earlier results by the current-volt measurements have shown the changes in the surface modification. The limit of detection (LOD) was noticed as 1 pM with the antibody as the probe, whereas the aptamer behaved better with the LOD at 100 fM. The time-series predictions from the AIoT application supported the obtained results with the laboratory analyses using both probes. This application clearly supports the results obtained from the interdigitated electrode sensor as aptamer to be the better option for analyzing the blood clotting defects. The current study supports a great implementation of AIoT in sensing application and can be followed for other clinical biomarkers.
    Matched MeSH terms: Limit of Detection
  13. Beh SY, Md Saleh N, Asman S
    Anal Methods, 2021 02 07;13(5):607-619.
    PMID: 33480366 DOI: 10.1039/d0ay02166k
    The usage of phenols in the marketplace has been increasing tremendously, which has raised concerns about their toxicity and potential effect as emerging pollutants. Phenol's structure has closely bonded phenyl and hydroxy groups, thereby making its functional characteristics closely similar to that of alcohol. As a result, phenol is used as a base compound for commercial home-based products. Hence, a simple and efficient procedure is required to determine the low concentration of phenols in environmental water samples. In this research, a method of combining magnetic nanoparticles (MNPs) with surfactant Sylgard 309 was developed to overcome the drawbacks in the classical extraction methods. In addition, this developed method improved the performance of extraction when MNPs and the surfactant Sylgard 309 were used separately, as reported in the previous research. This MNP-Sylgard 309 was synthesised by the coprecipitation method and attracts phenolic compounds in environmental water samples. Response surface methodology was used to study the parameters and responses in order to obtain an optimised condition using MNP-Sylgard 309. The parameters included the effect of pH, extraction time, and concentration of the analyte. Meanwhile, the responses measured were the peak area of the chromatogram and the percentage recovery. From this study, the results of the optimum conditions for extraction using MNP-Sylgard 309 were pH 7, extraction time of 20 min, and analyte concentration of 10.0 μg mL-1. Under the optimized conditions, MNP-Sylgard 309 showed a low limit of detection of 0.665 μg mL-1 and the limit of quantification was about 2.219 μg mL-1. MNP-Sylgard 309 was successfully applied on environmental water samples such as lake and river water. High recovery (76.23%-110.23%) was obtained.
    Matched MeSH terms: Limit of Detection
  14. Adam H, Gopinath SCB, Arshad MKM, Parmin NA, Hashim U
    Int J Biol Macromol, 2021 Feb 28;171:217-224.
    PMID: 33418041 DOI: 10.1016/j.ijbiomac.2021.01.014
    Misfolding and accumulation of the protein alpha synuclein in the brain cells characterize Parkinson's disease (PD). Electrochemical based aluminum interdigitated electrodes (ALIDEs) was fabricated by using conventional photolithography method and modified the surfaces with zinc oxide and gold nanorod by using spin coating method for the analysis of PD protein biomarker. The device surface modified with gold nanorod of 25 nm diameter was used. The bare devices and the surface modified devices were characterized by Scanning Electron Microscope, 3D-Profilometer, Atomic Force Microscope and high-power microscope. The above measurement was also performed to measure the interaction of antibody with aggregated alpha-synuclein for normal, aggregated and aggregated alpha synuclein in human serum and distinguished against 3 control proteins (PARK1, DJ-1 and Factor IX). The detection limit for normal alpha synuclein was 1 f. with the sensitivity of 1 f. on a linear regression (R2 = 0.9759). The detection limit for aggregated alpha synuclein was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9797). Also, the detection limit of aggregated alpha synuclein in serum was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9739). These results however indicate that, serum has only minimal amount of alpha synuclein.
    Matched MeSH terms: Limit of Detection
  15. Ying KS, Heng LY, Hassan NI, Hasbullah SA
    Sensors (Basel), 2020 Dec 03;20(23).
    PMID: 33287113 DOI: 10.3390/s20236898
    An all-solid-state potentiometric electrode system for aluminium ion determination was developed with a new aluminium ion sensor as the working electrode based on a new ionophore for aluminium ion, 1,1'-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea] (ACH). The reference electrode was a potassium ion sensor, which acts as a pseudo-reference. Both electrodes were made from Ag/AgCl screen-print electrodes fabricated from a non-plasticized and photocurable poly(n-butyl acrylate) membrane that contained various other membrane components. The pseudo-reference potential based on the potassium ion sensor was fixed in 0.050 M KNO3, and such concentration of K+ ion did not interfere with the measurement of the Al3+ ion using the aluminium sensor. With such a pseudo-reference and in the presence of 0.050 M KNO3 as a background medium, the aluminium sensor measured changes of aluminium ion concentrations linearly from 10-6 to 10-2 M Al3+ ion with a Nernstian response of 17.70 ± 0.13 mV/decade. A low detection limit of 2.45 × 10-7 M was achieved with this all-solid-state potentiometric system. The aluminium sensor was insensitive to pH effects from 2.0 to 8.0 with a response time of less than 50 s. Under optimum conditions, a lifetime of 49 days was achieved with good sensor selectivity, reversibility, repeatability, and reproducibility. The all-solid-state electrode system was applied to analyze the Al3+ ion content of water samples from a water treatment plant. Compared with the conventional potentiometric detection system for aluminium ions, the new all-solid-state aluminium ion sensor incorporating a pseudo-reference from the potassium sensor demonstrated similar analytical performance. It thus provided a convenient means of aluminium content analysis in water treatment plants.
    Matched MeSH terms: Limit of Detection
  16. Arul P, Gowthaman NSK, John SA, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14242-14253.
    PMID: 32596560 DOI: 10.1021/acsomega.9b03829
    Excess levels of nitrite ion in drinking water interact with amine functionalized compounds to form carcinogenic nitrosamines, which cause stomach cancer. Thus, it is indispensable to develop a simple protocol to detect nitrite. In this paper, a Cu-metal-organic framework (Cu-MOF) with graphene oxide (GO) composite was synthesized by ultrasonication followed by solvothermal method and then fabricated on a glassy carbon (GC) electrode for the sensitive and selective determination of nitrite contamination. The SEM image of the synthesized Cu-MOF showed colloidosome-like structure with an average size of 8 μm. Interestingly, the Cu-MOF-GO composite synthesized by ultrasonic irradiation followed by solvothermal process produce controlled size of 3 μm colloidosome-like structure. This was attributed to the formation of an exfoliated sheet-like structure of GO by ultrasonication in addition to the obvious influence of GO providing the oxygen functional groups as a nucleation node for size-controlled growth. On the other hand, the composite prepared without ultrasonication exhibited 6.6 μm size agglomerated colloidosome-like structures, indicating the crucial role of ultrasonication for the formation of size-controlled composites. XPS results confirmed the presence of Cu(II) in the as-synthesized Cu-MOF-GO based on the binding energies at 935.5 eV for Cu 2p3/2 and 955.4 eV for Cu 2p1/2. The electrochemical impedance studies in [Fe(CN)6]3-/4- redox couple at the composite fabricated electrode exhibited more facile electron transfer than that with Cu-MOF and GO modified electrodes, which helped to utilize Cu-MOF-GO for trace level determination of nitrite in environmental effluent samples. The Cu-MOF-GO fabricated electrode offered a superior sensitive platform for nitrite determination than the Cu-MOF and GO modified electrodes demonstrating oxidation at less positive potential with enhanced oxidation current. The present sensor detects nitrite in the concentration range of 1 × 10-8 to 1 × 10-4 M with the lowest limit of detection (LOD) of 1.47 nM (S/N = 3). Finally, the present Cu-MOF-GO electrode was successfully exploited for nitrite ion determination in lake and dye contaminated water samples.
    Matched MeSH terms: Limit of Detection
  17. Chin Kai Ling, Jaeyres Jani, Zainal Arifin Mustapha
    MyJurnal
    Introduction: Tuberculosis (TB), commonly caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide. The gold standard, microbiological culture for detection and differentiation of mycobac-teria are time-consuming and laborious. The use of fast, easy and sensitive nucleic acid amplification tests (NAATs) for diagnosis of TB remains challenging because there is a high degree of homology within Mtb complex (MTBC) members and absence of target genes in the genome of some strains. This study aimed to identify new candidate genetic marker and to design specific primers to detect Mtb using in silico methods. Methods: Using Basic Local Alignment Search Tool (BLAST) program, Mtb H37Rv chromosome reference genome sequence was mapped with other MTBC members and a single nucleotide polymorphism (SNP) at Rv1970 was found to be specific only for Mtb strains. Mismatch amplification mutation assay (MAMA) combine with polymerase chain reaction (PCR) was used as an alternative method to detect the point mutation. MAMA primers targeting the SNP were designed using Primer-BLAST and the PCR assay was optimized via Taguchi method. Results: The assay amplified a 112 bp gene fragment and was able to detect all Mtb strains, but not the other MTBC members and non-tuberculous Mycobacte-ria. The detection limit of the assay was 60 pg/μl. Conclusion: Bioinformatics has provided predictive identification of many new target markers. The designed primers were found to be highly specific at single-gene target resolution for detection of Mtb.
    Matched MeSH terms: Limit of Detection
  18. Azi Simon Onyema, Leslie Than Thian Lung, Suresh Kumar, Rukman Awang Hamat
    MyJurnal
    Introduction: Group A streptococcus (GAS) is responsible for high morbidity and mortality globally. Hence, the need to develop sensitive, reliable and cost- effective method of detection is crucial. In this study, we developed a visual detection method for the common virulence gene, streptococcal pyrogenic exotoxin B (speB) involved in invasive GAS diseases using loop-mediated isothermal amplification (LAMP) with fluorescent detection dye (calcein). Meth-ods: The LAMP reaction was optimized at 63°C for 35 minutes using five sets of primer designed with LAMP primer V5 software. When the dye was added prior to amplification, samples with speB DNA developed a characteristic green color after the reaction, but no color reactions were observed in samples with DNAs of non-GAS isolates. De-tection of speB by LAMP assay was done among 43 clinical isolates of blood, pus, wound, tissue and throat samples and ATCCs for controls. Our findings were further reconfirmed by subjecting the LAMP products to 0.5% gel electro-phoresis. Results: The detection limit of this LAMP assay for speB was 10-7 ng/μl of genomic DNA per reaction, which was 10,000-fold more sensitive than conventional PCR 10-3 ng/μl. All 100 % samples were positive for speB gene by LAMP, and 93% by conventional PCR method. Conclusion: LAMP assay could offer remarkably high sensitivity, specificity, repeatability, reliability, affordability, and visibility; it is appropriate for rapid detection of speB in Group A streptococci (GAS) as a point of care testing.
    Matched MeSH terms: Limit of Detection
  19. Lee ZY, Hawari HFB, Djaswadi GWB, Kamarudin K
    Materials (Basel), 2021 Jan 22;14(3).
    PMID: 33498992 DOI: 10.3390/ma14030522
    A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor's prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.
    Matched MeSH terms: Limit of Detection
  20. Ngamdee T, Yin LS, Vongpunsawad S, Poovorawan Y, Surareungchai W, Lertanantawong B
    Anal Chim Acta, 2020 Oct 16;1134:10-17.
    PMID: 33059855 DOI: 10.1016/j.aca.2020.08.018
    DNA strand displacement is an attractive, enzyme-free target hybridization strategy for nano-biosensing. The target DNA induces a strand displacement reaction by replacing the pre-hybridized strand that is labeled with gold nanoparticles (AuNPs). Thus, the amount of displaced-AuNP-labeled strand is proportional to the amount of target DNA in the sample. The use of a magnetogenosensing technique to isolate the target DNA allows for a simple, one-pot detection approach, which minimizes possible carry-over contamination and pipetting errors. We sought a proof-of-concept for this technology in its ability to detect DNA-equivalent of hepatitis E virus (HEV), which causes acute viral hepatitis for which rapid and simple diagnostic methods remain limited. Signal detection was done via visual observation, spectrophotometry, and electrochemistry. The sensor demonstrated good sensitivity with detection limits of 10 pM (visual), 10 pM (spectrophotometry) and 1 fM (electrochemical). This sensor also exhibited high specificity for real target amplicons and could discriminate between perfect and mismatched sequences. Lyophilized biosensor reagents stored at 4 °C, 25 °C, and outdoor ambient temperature, were stable for up to 90, 50, and 40 days, respectively. The integration of magnetic separation and target DNA-induced strand displacement reaction in a dry reagent form makes the sensing platform easy-to-use and suitable for field settings.
    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links