Displaying publications 81 - 100 of 118 in total

Abstract:
Sort:
  1. Bakar AA, Lim YL, Wilson SJ, Fuentes M, Bertling K, Taimre T, et al.
    Physiol Meas, 2013 Feb;34(2):281-9.
    PMID: 23363933 DOI: 10.1088/0967-3334/34/2/281
    Optical sensing offers an attractive option for detection of surface biopotentials in human subjects where electromagnetically noisy environments exist or safety requirements dictate a high degree of galvanic isolation. Such circumstances may be found in modern magnetic resonance imaging systems for example. The low signal amplitude and high source impedance of typical biopotentials have made optical transduction an uncommon sensing approach. We propose a solution consisting of an electro-optic phase modulator as a transducer, coupled to a vertical-cavity surface-emitting laser and the self-mixing signal detected via a photodiode. This configuration is physically evaluated with respect to synthesized surface electrocardiographic (EKG) signals of varying amplitudes and using differing optical feedback regimes. Optically detected EKG signals using strong optical feedback show the feasibility of this approach and indicate directions for optimization of the electro-optic transducer for improved signal-to-noise ratios. This may provide a new means of biopotential detection suited for environments characterized by harsh electromagnetic interference.
    Matched MeSH terms: Electronics/instrumentation*
  2. Sidhu P, Shankargouda S, Dicksit DD, Mahdey HM, Muzaffar D, Arora S
    J Endod, 2016 Apr;42(4):622-5.
    PMID: 26850688 DOI: 10.1016/j.joen.2015.12.027
    INTRODUCTION: Use of mobile phone has been prohibited in many hospitals to prevent interference with medical devices. Electromagnetic radiation emitted from cellular phones might interfere with electronic working length determination. The purpose of this in vitro study was to evaluate the effect of a smart phone (Samsung Galaxy Note Edge) on working length determination of electronic apex locators (EALs) Propex II and Rootor.

    METHODS: Fifteen intact, non-carious single-rooted teeth were decoronated at the cementoenamel junction. Visually, working length was determined by using a #15 K-file under stereomicroscope (×20). The effect of cellular phones on electronic working length (EWL) was determined under 2 experimental settings: (1) in a closed room with poor signal strength and (2) in a polyclinic set up with good signal strength and 5 conditions: (1) electronically, without cellular phone in room; (2) electronically, with cellular phone in physical contact with EAL; (3) electronically, with mobile phone in physical contact with EAL and in calling mode for a period of 25 seconds; (4) electronically, mobile phone placed at a distance of 40 cm from the EAL; and (5) electronically, mobile phone placed at a distance of 40 cm and in calling mode for a period of 25 seconds. The EWL was measured 3 times per tooth under each condition. Stability of the readings was scored from 1 to 3: (1) good stability, (2) stable reading after 1 attempt, and (3) stable reading after 2 attempts. The data were compared by using analysis of variance.

    RESULTS: The EWL measurements were not influenced by the presence of cellular phone and could be determined under all experimental conditions.

    CONCLUSIONS: Within the limitations of this study, it can be concluded that mobile phones do not interfere with the EWL determination.

    Matched MeSH terms: Electronics, Medical/instrumentation*
  3. Tan GL
    J Hum Ergol (Tokyo), 1996 Jun;25(1):49-62.
    PMID: 9551132 DOI: 10.11183/jhe1972.25.38
    The analyses of a few tasks were carried out in an electronics factory. The main objectives are to identify the ergonomic and biomechanical hazards of problem work tasks, to analyze each task systematically in order to evaluate the workers' exposures to the risk factors of force, posture pressure and repetition and to make recommendations to reduce the risks and hazards. The methodology includes objective measures--detailed analysis by going through training manuals, job description and production records. Subjective measures include interviewing the operator and supervisors informally, the operators were also required to fill in a structured questionnaire. The paper concludes by making recommendations to reduce the ergonomic hazards by engineering solutions, redesign or administrative controls or the implementation of procedures.
    Matched MeSH terms: Electronics*
  4. Kim HP, Vasilopoulou M, Ullah H, Bibi S, Ximim Gavim AE, Macedo AG, et al.
    Nanoscale, 2020 Apr 14;12(14):7641-7650.
    PMID: 32207472 DOI: 10.1039/c9nr10745b
    Organo-metal halide perovskite field-effect transistors present serious challenges in terms of device stability and hysteresis in the current-voltage characteristics. Migration of ions located at grain boundaries and surface defects in the perovskite film are the main reasons for instability and hysteresis issues. Here, we introduce a perovskite grain molecular cross-linking approach combined with amine-based surface passivation to address these issues. Molecular cross-linking was achieved through hydrogen bond interactions between perovskite halogens and dangling bonds present at grain boundaries and a hydrophobic cross-linker, namely diethyl-(12-phosphonododecyl)phosphonate, added to the precursor solution. With our approach, we obtained smooth and compact perovskite layers composed of tightly bound grains hence significantly suppressing the generation and migration of ions. Moreover, we achieved efficient surface passivation of the perovskite films upon surface treatment with an amine-bearing polymer, namely polyethylenimine ethoxylated. With our synergistic grain and surface passivation approach, we were able to demonstrate the first perovskite transistor with a complete lack of hysteresis and unprecedented stability upon continuous operation under ambient conditions. Added to the merits are its ambipolar transport of opposite carriers with balanced hole and electron mobilities of 4.02 and 3.35 cm2 V-1 s-1, respectively, its high Ion/Ioff ratio >104 and the lowest sub-threshold swing of 267 mV dec-1 reported to date for any perovskite transistor. These remarkable achievements obtained through a cost-effective molecular cross-linking of grains combined with amine-based surface passivation of the perovskite films open a new era and pave the way for the practical application of perovskite transistors in low-cost electronic circuits.
    Matched MeSH terms: Electronics
  5. Low Qin Jian, Teo Kuo Zhau, Mohd Nadzri Misni, Cheo Seng Wee
    MyJurnal
    Computed tomography pulmonary angiogram (CTPA) is widely used in the investigation of suspected pulmonary embolism. CTPA is not without adverse effects as it involves intravenous contrast injection and radiation exposure. The annual incidence of pulmonary embolism is 60 – 70 per 100,000 populations and CTPA remains the commonest imaging modality1. This study aims to audit all CTPA performed at Hospital Sultanah Nora Ismail, Batu Pahat, Johor for the entire year of 2018 to illustrate the demographic data, symptoms, risk factors, clinical scoring system applied and patients’ outcome. A retrospective study was conducted to audit all CTPA performed between 1st January to 31st December 2018 via the radiology department electronic records and patients’ records. There were a total of 60 CTPA performed in the entire year of 2018 with 16 positive and 44 negative scans. Among the 16 positive scans, 7 (44%) had a Wells score above 6, 6 (38%) had a Wells score between 2 – 6 and 3 (18%) had a Wells score less than 2. Out of the 16 positive scans, 4 (25%) were known malignancy and 1 was a known case of anti-phospholipid syndrome. All 60 patients had electrographs and arterial blood gases performed prior to CTPA. D dimer was performed in 15 cases (5%). Among the 16 positive scan patients, 4 (25%) passed away during the same admission directly or indirectly related to pulmonary embolism. This annual computed tomography audit report will assist clinicians in making better diagnostic decision when dealing with patients with suspected pulmonary embolism.
    Matched MeSH terms: Electronics
  6. Muhammad Zubir Yusof, Nik Ahmad Kamal Nik Mahmod, Nor Azlina A. Rahman, Ailin Razali, Niza Samsuddin, Nik Mohamed Nizan Nik Mohamed, et al.
    MyJurnal
    Occupational diseases are one of the major health problems related to workplace hazards.
    However, the epidemiological data for this problem is scarce especially among Small and
    Medium Industry (SMI) workers. These workers are vulnerable to occupational health problem
    due to lack of knowledge and implementation of health and safety in the workplace. In Malaysia,
    most of the SMI workers have limited coverage for basic occupational health services which
    may worsen their health. Thus, this article aims to provide a review on the burden of
    occupational health problems among them. The electronic and library searches were used to
    extract the information from both published and unpublished articles that were not limited to any
    year of publication until 2017. One hundred and ninety-six published articles and 198
    unpublished articles were retrieved from the database. Only 19 published articles and 25
    unpublished articles met the eligibility criteria. Prevalence data of occupational
    diseases/poisoning, including overall and body specific (musculoskeletal disorders) was
    extracted in raw data from the eligible studies. Prevalent statistics on occupational
    musculoskeletal diseases (1.3% - 97.6%), noise-induced hearing loss (29.4% - 73.3%),
    occupational skin diseases (10.5% - 84.3%), respiratory (1.9% - 92.2%) and occupational
    poisoning (14.9% - 17.7%) among the working population is different within published papers
    compared to unpublished ones. In Malaysia, there are no specific statistic that give a true picture
    of the burden of occupational diseases in the SMI. However, this review concludes that
    musculoskeletal diseases are significant occupational problems among SMI workers.
    Matched MeSH terms: Electronics
  7. Doris George, Chang Chee Tao, Kumutha Kumarasamy, Asri Ranga
    MyJurnal
    Introduction: Previous studies reported that a two-week double-dose clopidogrel treatment following percutaneous coronary intervention has no difference in safety compared to standard therapy. This study aimed to determine the all-cause readmission rate and survival after a year of percutaneous coronary intervention (PCI) in patients who were treated with two-week double-dose clopidogrel regimen. Methods: This was a retrospective study on patients who underwent PCI in a state general hospital in Malaysia in 2014. Patients’ one month and one-year survival status were retrieved using the hospital electronic patient management system. Patients who received a two-week course of 150mg clopidogrel and subsequently a one-year course of standard double antiplatelet therapy were included. Results: A total of 381 out of 563 patients who underwent PCI were included in the analysis, while those who were switched to ticagrelor and transferred to other hospitals post-PCI excluded. Patients had a mean age of 56.9 (SD 10.7), with majority male (331, 86.9%) and Malay (144, 37.8%). The PCI was mainly indicated for ST-elevated myocardial infarction (188, 49.3%), non-STEMI (114, 29.9%) and unstable angina (36, 9.4%). A total of 107 (28.1%) patients were readmitted within the one year post-PCI period. Readmissions were mainly due to ACS (55.5%) and bleeding events (2.4%). The 30-day and 1-year all-cause mortality was 33 cases and 43 cases, respectively. Conclu- sion: The low readmission and bleeding related readmission suggested that the two-week double-dose clopidogrel regimen was safe for the post PCI patients. Future randomised trial to establish the efficacy of this dosing regimen is therefore warranted.
    Matched MeSH terms: Electronics
  8. Fadzidah Mohd Idris, Khamirul Amin Matori, Idza Riati Ibrahim, Rodziah Nazlan, Mohd Shamsul Ezzad Shafie
    MyJurnal
    The rapid growth of electronic systems and devices operating within the gigahertz (GHz) frequency range has increased electromagnetic interference. In order to eliminate or reduce the spurious electromagnetic radiation levels more closely in different applications, there is strong research interest in electromagnetic absorber technology. Moreover, there is still a lack of ability to absorb electromagnetic radiation in a broad frequency range using thin thickness. Thus, this study examined the effect of incorporating magnetic and dielectric materials into the polymer matrix for the processing of radar absorbing materials. The experiment evaluated the sample preparation with different weight percentages of multi-walled carbon nanotubes (MWCNT) mixed with Ni0.5Zn0.5Fe2O4 (Nickel-Zinc-Ferrite) loaded into epoxy (P) as a matrix. The prepared samples were analysed by examining the reflectivity measurements in the 8 – 18 GHz frequency range and conducting a morphological study using scanning electron microscopy analyses. The correlation of the results showed that different amounts of MWCNT influenced the performance of the microwave absorber. As the amount of MWCNTs increased, the reflection loss (RL) peak shifted towards a lower frequency range and the trend was similar for all thicknesses. The highest RL was achieved when the content of MWCNTs was 2 wt% with a thickness of 2 mm with an RL of – 14 dB at 16 GHz. The 2.5 GHz bandwidth corresponded to the RL below -10 dB (90% absorption) in the range of 14.5 – 17 GHz. This study showed that the proposed experimental route provided flexible absorbers with suitable absorption values by mixing only 2 wt% of MWCNTs.

    Matched MeSH terms: Electronics
  9. Mohd Hassan S, Sulaiman Z, Tengku Ismail TA
    Malays Fam Physician, 2021 Mar 25;16(1):18-30.
    PMID: 33948139 DOI: 10.51866/rv0997
    Objective: This article aims to review the literature published over the past five decades related to the experiences of women who have undergone induced lactation.

    Methods: A comprehensive electronic search was conducted using PubMed, the Library of Congress, Google Scholar, SAGE, and ScienceDirect. The following search keywords were used: adoptive breastfeeding, induced lactation, non-puerperal lactation, extraordinary breastfeeding, and milk kinship. The search was restricted to articles written in English and published from 1956 to 2019. All study designs were included except for practice protocols.

    Results: A total of 50 articles about induced lactation were retrieved. Of these, 17 articles identified the experiences of women who underwent induced lactation. The articles included original papers (n=7), reviews (n=5), and case reports (n=5). Four articles were specifically related to Malaysia, and the others were international. These 17 articles concerning the experiences of women who induced lactation will be reviewed based on four themes related to inducing lactation: (a) understanding women's perception of satisfaction, (b) emotional aspects, (c) enabling factors, and (d) challenges.

    Conclusion: Identifying a total of only 17 articles on induced lactation published over the last 53 years suggests that the subject is understudied. This review provides emerging knowledge regarding the experiences of women who have induced lactation in terms of satisfaction, emotions, enabling factors and challenges related to inducing lactation.

    Matched MeSH terms: Electronics
  10. Harnois M, Himdi M, Yong WY, Rahim SKA, Tekkouk K, Cheval N
    Sci Rep, 2020 Feb 03;10(1):1714.
    PMID: 32015444 DOI: 10.1038/s41598-020-58657-5
    Manufacturing an array of high-quality metallic pattern layers on a dielectric substrate remains a major challenge in the development of flexible and 3-D frequency selective surfaces (FSS). This paper proposes an improved fabrication solution for the 3-D FSS based on water transfer printing (WTP) technology. The main advantages of the proposed solution are its ability to transform complicated 2-D planar FSS patterns into 3-D structures while improving both manufacturing quality and production costs. WTP technology makes use of water surface tension to keep the thin metallic patterns of the proposed FSS floating flat with the absence of a solid planar substrate. This feature enables these metallic FSS patterns to be transferred onto 3-D structures through a dipping process. To test the effectiveness of the proposed technique, the FSS was designed using computer simulation software Microwave Studio to obtain the numerical performance of the FSS structure. The WTP technology was then used to fabricate the proposed FSS prototype before its performance was tested experimentally. The measurement results agreed well with the numerical results, indicating the proposed manufacturing solution would support the development of complicated 3-D electronics devices, such as conformal antenna arrays and metamaterials.
    Matched MeSH terms: Electronics
  11. Zolkefley MKI, Firwana YMS, Hatta HZM, Rowbin C, Nassir CMNCM, Hanafi MH, et al.
    J Phys Ther Sci, 2021 Jan;33(1):75-83.
    PMID: 33519079 DOI: 10.1589/jpts.33.75
    [Purpose] Understanding the essential mechanisms in post-stroke recovery not only provides important basic insights into brain function and plasticity but can also guide the development of new therapeutic approaches for stroke patients. This review aims to give an overview of how various variables of Magnetic Resonance-Diffusion Tensor Imaging (MR-DTI) metrics of fractional anisotropy (FA) can be used as a reliable quantitative measurement and indicator of corticospinal tract (CST) changes, particularly in relation to functional motor outcome correlation with a Fugl-Meyer assessment in stroke rehabilitation. [Methods] PubMed electronic database was searched for the relevant literature, using key words of diffusion tensor imaging (dti), corticospinal tract, and stroke. [Results] We reviewed the role of FA in monitoring CST remodeling and its role of predicting motor recovery after stroke. We also discussed the mechanism of CST remodeling and its modulation from the value of FA and FMA-UE. [Conclusion] Heterogeneity of post-stroke brain disorganization and motor impairment is a recognized challenge in the development of accurate indicators of CST integrity. DTI-based FA measurements offer a reliable and evidence-based indicator for CST integrity that would aid in predicting motor recovery within the context of stroke rehabilitation.
    Matched MeSH terms: Electronics
  12. Chen AH, Rosli SA, Hovis JK
    J Environ Public Health, 2020;2020:9793425.
    PMID: 33376494 DOI: 10.1155/2020/9793425
    Environmental influence is one of the attributing factors for health status. Chronic interaction with electronic display technology and lack of outdoor activities might lead to health issues. Given the concerns about the digital impact on lifestyle and health challenges, we aimed to investigate the daily activity inclination and health complaints among the Malaysian youth. A self-administered questionnaire covering lifestyle and health challenges was completed by 220 youths aged between 16 and 25. There were a total of 22 questions. Seven questions inspected the patterns of indoor and outdoor activities. Fifteen questions focused on the visual and musculoskeletal symptoms linked to both mental and physical health. The total time spent indoors (15.0 ± 5.4 hours/day) was significantly higher than that spent outdoors (2.5 ± 2.6 hours/day) (t = 39.01, p < 0.05). Total time engrossed in sedentary activities (13.0 ± 4.5 hours/day) was significantly higher than that in nonsedentary activities (4.5 ± 3.8 hours/day) comprised of indoor sports and any outdoor engagements (t = 27.10, p < 0.05). The total time spent on electronic related activities (9.5 ± 3.7 hours/day) was were higher than time spent on printed materials (3.4 ± 1.6 hours/day) (t = 26.01, p < 0.05). The association of sedentary activities was positive in relation to tired eyes (χ2 = 17.58, p < 0.05), sensitivity to bright light (χ2 = 12.10, p < 0.05), and neck pain (χ2 = 17.27, p < 0.05) but negative in relation to lower back pain (χ2 = 8.81, p < 0.05). Our youth spent more time in building and engaged in sedentary activities, predominantly electronic usage. The health-related symptoms, both visual and musculoskeletal symptoms, displayed a positive association with a sedentary lifestyle and a negative association with in-building time.
    Matched MeSH terms: Electronics
  13. Sivarajan S, Mani SA, John J, Fayed MMS, Kook YA, Wey MC
    Korean J Orthod, 2021 Jan 25;51(1):55-74.
    PMID: 33446621 DOI: 10.4041/kjod.2021.51.1.55
    Objective: To systematically review studies on canine agenesis prevalence in different populations and continents, based on the jaw, sex, location, and associated dental anomalies.

    Methods: Electronic and hand searches of English literature in PubMed, Web of Science, Scopus, OpenGrey, and Science Direct were conducted, and the authors were contacted when necessary. Observational studies (population-based, hospital/clinic-based, and cross-sectional) were included. For study appraisal and synthesis, duplicate selection was performed independently by two reviewers. Study quality was assessed using a modified Strengthening the Reporting of Observational Studies in Epidemiology checklist, with main outcome of prevalence of canine agenesis.

    Results: The global population prevalence of canine agenesis was 0.30% (0.0-4.7%), highest in Asia (0.54%), followed by Africa (0.33%), and the least in Europe and South America (0.19% in both continents). Canine agenesis was more common in the maxilla (88.57%), followed by both maxilla and mandible (8.57%), and the least common was mandible-only presentation (2.86%). The condition was more common in females (female:male ratio = 1.23), except in Asia (female:male ratio = 0.88) and Africa (female:male ratio = 1). In Asia, unilateral agenesis was almost twice as prevalent as bilateral, but in Europe, the bilateral form was more common.

    Conclusions: The overall prevalence of canine agenesis is 0.30%, with the highest prevalence in Asia, followed by Africa, Europe, and South America. The condition is more common in the maxilla than the mandible, and in females than males (except in Asia and Africa), with unilateral agenesis being more common in Asia and the bilateral form showing a greater prevalence in Europe.

    Matched MeSH terms: Electronics
  14. Yahya N, Manan HA
    Support Care Cancer, 2021 Jun;29(6):3035-3047.
    PMID: 33040284 DOI: 10.1007/s00520-020-05808-z
    BACKGROUND: Proton therapy (PT), frequently utilised to treat paediatric brain tumour (PBT) patients, eliminates exit dose and minimises dose to healthy tissues that theoretically can mitigate treatment-related effects including cognitive deficits. As clinical outcome data are emerging, we aimed to systematically review current evidence of cognitive changes following PT of PBT.

    MATERIALS AND METHODS: We searched PubMed and Scopus electronic databases to identify eligible reports on cognitive changes following PT of PBT according to PRISMA guidelines. Reports were extracted for information on demographics and cognitive outcomes. Then, they were systematically reviewed based on three themes: (1) comparison with photon therapy, (2) comparison with baseline cognitive measures, to population normative mean or radiotherapy-naïve PBT patients and (3) effects of dose distribution to cognition.

    RESULTS: Thirteen reports (median size (range): 70 (12-144)) were included. Four reports compared the cognitive outcome between PBT patients treated with proton to photon therapy and nine compared with baseline/normative mean/radiotherapy naïve from which two reported the effects of dose distribution. Reports found significantly poorer cognitive outcome among patients treated with photon therapy compared with proton therapy especially in general cognition and working memory. Craniospinal irradiation (CSI) was consistently associated with poorer cognitive outcome while focal therapy was associated with minor cognitive change/difference. In limited reports available, higher doses to the hippocampus and temporal lobes were implicated to larger cognitive change.

    CONCLUSION: Available evidence suggests that PT causes less cognitive deficits compared with photon therapy. Children who underwent focal therapy with proton were consistently shown to have low risk of cognitive deficit suggesting the need for future studies to separate them from CSI. Evidence on the effect of dose distribution to cognition in PT is yet to mature.

    Matched MeSH terms: Electronics
  15. Lim XB, Ong WJ
    Nanoscale Horiz, 2021 May 21.
    PMID: 34018529 DOI: 10.1039/d1nh00127b
    The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
    Matched MeSH terms: Electronics
  16. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7139-7148.
    PMID: 31039868 DOI: 10.1166/jnn.2019.16666
    In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO₂). As synthesized SnO₂ nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO₂. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO₂ lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO₂ NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO₂ nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO₂ nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.
    Matched MeSH terms: Electronics
  17. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: Electronics
  18. Mimala Arasaratnam, Zailina Hashim, Shamsul Bahari Shamsudin
    MyJurnal
    A cross-sectional study was conducted on 83 female electronics factory workers. The respondents comprised 50 exposed workers who use lead alloy solder and 33 unexposed workers. The objective of this study was to assess the lead exposure of these workers. Breathing zone were sampled using air sampling pumps. Dust samples were collected by wipe method. Venous blood collected and blood pressure were measured. All lead analyses were carried out with Graphite Furnace Atomic Absorption Spectrophotometer. The mean air lead for exposed workers (57 0. ± 0.93 μg/m³) was significantly higher than the unexposed workers (0.0067 ± 0.0045μg/m³) (p
    Matched MeSH terms: Electronics
  19. Chia PY, Haseeb ASMA, Mannan SH
    Materials (Basel), 2016 May 31;9(6).
    PMID: 28773552 DOI: 10.3390/ma9060430
    Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs) after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu₃Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni)₆Sn₅ and (Cu,Ni)₃Sn, respectively. Details of the reaction sequence and mechanisms are discussed.
    Matched MeSH terms: Electronics
  20. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, et al.
    Adv Mater, 2018 Jun;30(23):e1800917.
    PMID: 29633379 DOI: 10.1002/adma.201800917
    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
    Matched MeSH terms: Electronics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links