[Purpose] Understanding the essential mechanisms in post-stroke recovery not only provides important basic insights into brain function and plasticity but can also guide the development of new therapeutic approaches for stroke patients. This review aims to give an overview of how various variables of Magnetic Resonance-Diffusion Tensor Imaging (MR-DTI) metrics of fractional anisotropy (FA) can be used as a reliable quantitative measurement and indicator of corticospinal tract (CST) changes, particularly in relation to functional motor outcome correlation with a Fugl-Meyer assessment in stroke rehabilitation. [Methods] PubMed electronic database was searched for the relevant literature, using key words of diffusion tensor imaging (dti), corticospinal tract, and stroke. [Results] We reviewed the role of FA in monitoring CST remodeling and its role of predicting motor recovery after stroke. We also discussed the mechanism of CST remodeling and its modulation from the value of FA and FMA-UE. [Conclusion] Heterogeneity of post-stroke brain disorganization and motor impairment is a recognized challenge in the development of accurate indicators of CST integrity. DTI-based FA measurements offer a reliable and evidence-based indicator for CST integrity that would aid in predicting motor recovery within the context of stroke rehabilitation.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.