Methods: We conducted a retrospective review of 70 patients with LPD (35 with lymphoma and 35 with multiple myeloma) who had undergone APBSCT between January 2008 and December 2016. Data obtained included disease type, treatment, and stem cell characteristics. Kaplan-Meier analysis was performed for probabilities of neutrophil and platelet engraftment occurred and was compared by the log-rank test. The multivariate Cox proportional hazards regression model was used for the analysis of potential independent factors influencing engraftment. A p-value < 0.050 was considered statistically significant.
Results: Most patients were ethnic Malay, the median age at transplantation was 49.5 years. Neutrophil and platelet engraftment occurred in a median time of 18 (range 4-65) and 17 (range 6-66) days, respectively. The majority of patients showed engraftment with 65 (92.9%) and 63 (90.0%) showing neutrophil and platelet engraftment, respectively. We observed significant differences between neutrophil engraftment and patient's weight (< 60/≥ 60 kg), stage of disease at diagnosis, number of previous chemotherapy cycles (< 8/≥ 8), and pre-transplant radiotherapy. While for platelet engraftment, we found significant differences with gender, patient's weight (< 60/≥ 60 kg), pre-transplant radiotherapy, and CD34+ dosage (< 5.0/≥ 5.0 × 106/kg and < 7.0/≥ 7.0 × 106/kg). The stage of disease at diagnosis (p = 0.012) and pre-transplant radiotherapy (p = 0.025) were found to be independent factors for neutrophil engraftment whereas patient's weight (< 60/≥ 60 kg, p = 0.017), age at transplantation (< 50/≥ 50 years, p = 0.038), and CD34+ dosage (< 7.0/≥ 7.0 × 106/kg, p = 0.002) were found to be independent factors for platelet engraftment.
Conclusions: Patients with LPD who presented at an early stage and with no history of radiotherapy had faster neutrophil engraftment after APBSCT, while a younger age at transplantation with a higher dose of CD34+ cells may predict faster platelet engraftment. However, additional studies are necessary for better understanding of engraftment kinetics to improve the success of APBSCT.
METHODS: The protocol of this systematic review and meta-analysis was registered with PROSPERO (CRD42020176327). PubMed, Scopus, ScienceDirect and Google Scholar databases were searched between 1st December 2019 and 3rd April 2020 without language restrictions. Both adult (≥18 years) and paediatric (<18 years) COVID-19 patients were considered eligible. We used random-effects model for the meta-analysis to obtain the pooled prevalence and risk ratio (RR) with 95% confidence intervals (CIs). Quality assessment of included studies was performed using the Joanna Briggs Institute critical appraisal tools. Heterogeneity was assessed using the I² statistic and Cochran's Q test. Robustness of the pooled estimates was checked by different subgroups and sensitivity analyses.
RESULTS: We identified 2055 studies, of which 197 studies (n = 24266) were included in the systematic review and 167 studies with 17142 adults and 373 paediatrics were included in the meta-analysis. Overall, the pooled prevalence of fever in adult and paediatric COVID-19 patients were 79.43% [95% CI: 77.05-81.80, I2 = 95%] and 45.86% [95% CI: 35.24-56.48, I2 = 78%], respectively. Besides, 14.45% [95% CI: 10.59-18.32, I2 = 88%] of the adult COVID-19 patients were accompanied with chills. In adult COVID-19 patients, the prevalence of medium-grade fever (44.33%) was higher compared to low- (38.16%) and high-grade fever (14.71%). In addition, the risk of both low (RR: 2.34, 95% CI: 1.69-3.22, p<0.00001, I2 = 84%) and medium grade fever (RR: 2.79, 95% CI: 2.21-3.51, p<0.00001, I2 = 75%) were significantly higher compared to high-grade fever, however, there was no significant difference between low- and medium-grade fever (RR: 1.17, 95% CI: 0.94-1.44, p = 0.16, I2 = 87%). 88.8% of the included studies were of high-quality. The sensitivity analyses indicated that our findings of fever prevalence for both adult and paediatric patients are reliable and robust.
CONCLUSIONS: The prevalence of fever in adult COVID-19 patients was high, however, 54.14% of paediatric COVID-19 patients did not exhibit fever as an initial clinical feature. Prevalence and risk of low and medium-grade fevers were higher compared to high-grade fever.
MATERIALS AND METHODS: This was a prospective interventional study. Cone-beam computerized tomography (CBCT) images of 22 patients were taken before and after treatment by using Planmeca Promax 3D CBCT machine version 2.9.2 (Planmeca OY Helsinki, Finland). The condylar width, height, length, roof of glenoid fossa thickness, and all joint spaces were measured. The condylar position was determined based on Pullinger and Hollander formula. The condylar shape was determined as per Kinzinger et al. The condylar volume was calculated by using Mimics software (Materialize, Belgium).
STATISTICAL ANALYSIS: Data analysis was performed by using SPSS software version 24. Wilcoxon paired signed-rank test was used to compare the difference in temporomandibular joint morphology and condylar volume between pre- and post-treatment measurements. Chi-square test was used to compare the condylar position and shape.
RESULTS: The superior (p = 0.000 on the right side, p = 0.005 on the left side) and posterior joint spaces (p = 0.000 on both sides) were decreased after the treatment, respectively. The condyles were rotated upward and backward, thereby increasing the anterior joint spaces (p = 0.000 on both sides) after the treatment. The condylar volume increases after treatment, but no significant differences were observed (p = 0.903 on the right side, p = 0.062 on the left side).
CONCLUSION: The significant changes were observed in joint spaces. The condyles were more anteriorly placed before treatment. Condylar position and shape alter in response to ASSD treatment. The condylar volume did not show any significant change.
Objectives: To identify and prioritize learning needs based on self-perceived competence of ward pharmacists in AMS, to identify predictors of self-perceived competence, learning methods in AMS and perceived barriers to learning.
Methods: A cross-sectional survey involving ward pharmacists from Hospital Canselor Tuanku Muhriz (HCTM) and hospitals under the Ministry of Health was conducted from May to July 2018.
Results: A total of 553 ward pharmacists from 67 hospitals responded to this survey (71.3% response rate). Knowledge of infections, antimicrobials and AMS systems, confidence to advise on various issues relating to antimicrobial therapy and participation in clinical audit and evaluation were among the learning needs identified (median score 3.00). Meanwhile, knowledge on the epidemiology of infections, off-label use of antimicrobials and pharmacoeconomics relating to antimicrobials had lower median scores (2.00) and were thus prioritized as high learning needs. Significant predictors of self-perceived competence in AMS were: gender (P
METHODS: Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2.
RESULTS: The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest.
CONCLUSION: These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.
Methods: Based on the morphine withdrawal model, rats were morphine treated with increasing doses from 10 to 50 mg/kg twice daily over a period of 6 days. The treatment was discontinued on day 7 in order to induce a spontaneous morphine abstinence. The withdrawal signs were measured daily after 24 h of the last morphine administration over a period of 28 abstinence days. In rats that developed withdrawal signs, a drug replacement treatment was given using mitragynine, methadone, or buprenorphine and the global withdrawal score was evaluated.
Results: The morphine withdrawal model induced profound withdrawal signs for 16 days. Mitragynine (5-30 mg/kg; i.p.) was able to attenuate acute withdrawal signs in morphine dependent rats. On the other hand, smaller doses of methadone (0.5-2 mg/kg; i.p.) and buprenorphine (0.4-1.6 mg/kg; i.p.) were necessary to mitigate these effects.
Conclusions: These data suggest that mitragynine may be a potential drug candidate for opiate withdrawal treatment.
MATERIALS AND METHODS: A total of 128 diabetic patients with foot ulcers were recruited and divided into two groups, consisting of 73 patients in the IDFU group and 55 in the non-infected diabetic foot ulcer (NIDFU). The severity of infection in IDFU patients was graded based on the Infectious Disease Society of America-International Working Group on the Diabetic Foot classification. Blood samples from all the patients were collected for measurement of PCT, high sensitivity C-reactive protein (hs-CRP) and white cell count (WBC). The area under the receiver operating curves (AUC) were then constructed and analysed.
RESULTS: PCT, hs-CRP and WBC levels were significantly higher in the IDFU group compared to NIDFU with hs-CRP demonstrated the highest AUC (0.91; p <0.001) followed by PCT (0.814; p < 0.001) and lastly WBC (0.775; p < 0.001). The best cut off value, sensitivity and specificity for the presence of infection in diabetic foot, were 3.47 mg/dL, 80% and 89% for hs-CRP, 0.11 ng/ml, 70% and 87% for PCT and 11.8x109/L, 60% and 90% for WBC. All the infection markers showed significant positive correlations with infection severity of DFU.
CONCLUSION: This study showed that hs-CRP is a more sensitive marker for diagnosing IDFU. Although PCT is useful in differentiating IDFU from NIDFU, the use of PCT is not necessary as it adds little value to the current practice.