Displaying publications 81 - 100 of 100 in total

Abstract:
Sort:
  1. Suwarnalata G, Tan AH, Isa H, Gudimella R, Anwar A, Loke MF, et al.
    PLoS One, 2016;11(4):e0153725.
    PMID: 27100827 DOI: 10.1371/journal.pone.0153725
    Parkinson's disease (PD) is the second most common chronic and progressive neurodegenerative disorder. Its etiology remains elusive and at present only symptomatic treatments exists. Helicobacter pylori chronically colonizes the gastric mucosa of more than half of the global human population. Interestingly, H. pylori positivity has been found to be associated with greater of PD motor severity. In order to investigate the underlying cause of this association, the Sengenics Immunome protein array, which enables simultaneous screening for autoantibodies against 1636 human proteins, was used to screen the serum of 30 H. pylori-seropositive PD patients (case) and 30 age- and gender-matched H. pylori-seronegative PD patients (control) in this study. In total, 13 significant autoantibodies were identified and ranked, with 8 up-regulated and 5 down-regulated in the case group. Among autoantibodies found to be elevated in H. pylori-seropositive PD were included antibodies that recognize Nuclear factor I subtype A (NFIA), Platelet-derived growth factor B (PDGFB) and Eukaryotic translation initiation factor 4A3 (eIFA3). The presence of elevated autoantibodies against proteins essential for normal neurological functions suggest that immunomodulatory properties of H. pylori may explain the association between H. pylori positivity and greater PD motor severity.
  2. Yong HS, Eamsobhana P, Lim PE, Razali R, Aziz FA, Rosli NS, et al.
    Acta Trop, 2015 Aug;148:51-7.
    PMID: 25910624 DOI: 10.1016/j.actatropica.2015.04.012
    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes.
  3. Rahim NI, Mohammed BS, Al-Fakih A, Wahab MMA, Liew MS, Anwar A, et al.
    Materials (Basel), 2020 Jun 22;13(12).
    PMID: 32580327 DOI: 10.3390/ma13122804
    Deep beams are more susceptible to shear failure, and therefore reparation is a crucial for structural reinforcements. Shear failure is structural concrete failure in nature. It generally occurs without warning; however, it is acceptable for the beam to fail in bending but not in shear. The experimental study presented the structural behavior of the deep beams of reinforced concrete (RC) that reinforces the web openings with externally connected carbon fiber reinforced polymer (CFRP) composite in the shear zone. The structural behavior includes a failure mode, and cracking pattern, load deflection responses, stress concentration and the reinforcement factor were investigated. A total of nine reinforced concrete deep beams with openings strengthened with CFRP and one control beam without an opening have been cast and tested under static four-point bending load till failure. The experimental results showed that the increase the size of the opening causes an increase in the shear strength reduction by up to 30%. Therefore, the larger the openings, the lower the capability of load carriage, in addition to an increase in the number of CFRP layers that could enhance the load carrying capacity. Consequently, utilization of the CFRP layer wrapping technique strengthened the shear behavior of the reinforced concrete deep beams from about 10% to 40%. It was concluded that the most effective number of CFRP layers for the deep beam with opening sizes of 150 mm and 200 mm were two layers and three layers, respectively.
  4. Taha M, Ismail NH, Khan A, Shah SA, Anwar A, Halim SA, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3285-9.
    PMID: 26077497 DOI: 10.1016/j.bmcl.2015.05.069
    We synthesized a series of novel 5-24 derivatives of oxindole. The synthesis started from 5-chlorooxindole, which was condensed with methyl 4-carboxybezoate and result in the formation of benzolyester derivatives of oxindole which was then treated with hydrazine hydrate. The oxindole benzoylhydrazide was treated with aryl acetophenones and aldehydes to get target compounds 5-24. The synthesized compounds were evaluated for urease inhibition; the compound 5 (IC50 = 13.00 ± 0.35 μM) and 11 (IC50 = 19.20 ± 0.50 μM) showed potent activity as compared to the standard drug thiourea (IC50 = 21.00 ± 0.01 μM). Other compounds showed moderate to weak activity. All synthetic compounds were characterized by different spectroscopic techniques including (1)H NMR, (13)C NMR, IR and EI MS. The molecular interactions of the active compounds within the binding site of urease enzyme were studied through molecular docking simulations.
  5. Masri A, Khan NA, Zoqratt MZHM, Ayub Q, Anwar A, Rao K, et al.
    BMC Microbiol, 2021 Feb 17;21(1):51.
    PMID: 33596837 DOI: 10.1186/s12866-021-02097-2
    BACKGROUNDS: Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study.

    RESULTS: 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P

  6. Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, et al.
    PLoS One, 2016;11(6):e0157901.
    PMID: 27355363 DOI: 10.1371/journal.pone.0157901
    Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite.
  7. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
  8. Ramanathan B, Jindal HM, Le CF, Gudimella R, Anwar A, Razali R, et al.
    PLoS One, 2017;12(8):e0182524.
    PMID: 28797043 DOI: 10.1371/journal.pone.0182524
    Rapid progress in next generation sequencing and allied computational tools have aided in identification of single nucleotide variants in genomes of several organisms. In the present study, we have investigated single nucleotide polymorphism (SNP) in ten multi-antibiotic resistant Pseudomonas aeruginosa clinical isolates. All the draft genomes were submitted to Rapid Annotations using Subsystems Technology (RAST) web server and the predicted protein sequences were used for comparison. Non-synonymous single nucleotide polymorphism (nsSNP) found in the clinical isolates compared to the reference genome (PAO1), and the comparison of nsSNPs between antibiotic resistant and susceptible clinical isolates revealed insights into the genome variation. These nsSNPs identified in the multi-drug resistant clinical isolates were found to be altering a single amino acid in several antibiotic resistant genes. We found mutations in genes encoding efflux pump systems, cell wall, DNA replication and genes involved in repair mechanism. In addition, nucleotide deletions in the genome and mutations leading to generation of stop codons were also observed in the antibiotic resistant clinical isolates. Next generation sequencing is a powerful tool to compare the whole genomes and analyse the single base pair variations found within the antibiotic resistant genes. We identified specific mutations within antibiotic resistant genes compared to the susceptible strain of the same bacterial species and these findings may provide insights to understand the role of single nucleotide variants in antibiotic resistance.
  9. Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, et al.
    Acta Trop, 2023 Mar;239:106824.
    PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824
    Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
  10. Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, et al.
    Acta Trop, 2023 Dec;248:107033.
    PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033
    Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
  11. Ahmed U, Ong SK, Tan KO, Khan KM, Khan NA, Siddiqui R, et al.
    Int Microbiol, 2023 Nov 28.
    PMID: 38015290 DOI: 10.1007/s10123-023-00450-1
    Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 μM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.
  12. Rao K, Abdullah M, Ahmed U, Wehelie HI, Shah MR, Siddiqui R, et al.
    Arch Microbiol, 2024 Mar 04;206(4):134.
    PMID: 38433145 DOI: 10.1007/s00203-024-03854-3
    Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.
  13. Zain SM, Mohamed R, Cooper DN, Razali R, Rampal S, Mahadeva S, et al.
    PLoS One, 2014;9(4):e95604.
    PMID: 24743702 DOI: 10.1371/journal.pone.0095604
    Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in 'second hit' hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH.
  14. Jabri T, Daalah M, Alawfi BS, Gul J, Ahmed U, Shah MR, et al.
    Parasitol Res, 2024 Nov 20;123(11):387.
    PMID: 39565414 DOI: 10.1007/s00436-024-08389-6
    Acanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p 
  15. Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, et al.
    Oral Dis, 2012 Jul;18(5):469-76.
    PMID: 22251088 DOI: 10.1111/j.1601-0825.2011.01894.x
    Multistep pathways and mechanisms are involved in the development of oral cancer. Chromosomal alterations are one of such key mechanisms implicated oral carcinogenesis. Therefore, this study aims to determine the genomic copy number alterations (CNAs) in oral squamous cell carcinoma (OSCC) using array comparative genomic hybridization (aCGH) and in addition attempt to correlate CNAs with modified gene expression.
  16. Vincent-Chong VK, Salahshourifar I, Woo KM, Anwar A, Razali R, Gudimella R, et al.
    PLoS One, 2017;12(4):e0174865.
    PMID: 28384287 DOI: 10.1371/journal.pone.0174865
    BACKGROUND: Cancers of the oral cavity are primarily oral squamous cell carcinomas (OSCCs). Many of the OSCCs present at late stages with an exceptionally poor prognosis. A probable limitation in management of patients with OSCC lies in the insufficient knowledge pertaining to the linkage between copy number alterations in OSCC and oral tumourigenesis thereby resulting in an inability to deliver targeted therapy.

    OBJECTIVES: The current study aimed to identify copy number alterations (CNAs) in OSCC using array comparative genomic hybridization (array CGH) and to correlate the CNAs with clinico-pathologic parameters and clinical outcomes.

    MATERIALS AND METHODS: Using array CGH, genome-wide profiling was performed on 75 OSCCs. Selected genes that were harboured in the frequently amplified and deleted regions were validated using quantitative polymerase chain reaction (qPCR). Thereafter, pathway and network functional analysis were carried out using Ingenuity Pathway Analysis (IPA) software.

    RESULTS: Multiple chromosomal regions including 3q, 5p, 7p, 8q, 9p, 10p, 11q were frequently amplified, while 3p and 8p chromosomal regions were frequently deleted. These findings were in confirmation with our previous study using ultra-dense array CGH. In addition, amplification of 8q, 11q, 7p and 9p and deletion of 8p chromosomal regions showed a significant correlation with clinico-pathologic parameters such as the size of the tumour, metastatic lymph nodes and pathological staging. Co-amplification of 7p, 8q, 9p and 11q regions that harbored amplified genes namely CCND1, EGFR, TPM2 and LRP12 respectively, when combined, continues to be an independent prognostic factor in OSCC.

    CONCLUSION: Amplification of 3q, 5p, 7p, 8q, 9p, 10p, 11q and deletion of 3p and 8p chromosomal regions were recurrent among OSCC patients. Co-alteration of 7p, 8q, 9p and 11q was found to be associated with clinico-pathologic parameters and poor survival. These regions contain genes that play critical roles in tumourigenesis pathways.

  17. Vincent-Chong VK, Karen-Ng LP, Abdul Rahman ZA, Yang YH, Anwar A, Zakaria Z, et al.
    Head Neck, 2014 Sep;36(9):1268-1278.
    PMID: 31615169 DOI: 10.1002/hed.23448
    BACKGROUND: The purpose of this study was to investigate the cause of behavioral difference between tongue and cheek squamous cell carcinomas (SCCs) by verifying the copy number alterations (CNAs).

    METHODS: Array comparative genomic hybridization (aCGH) was used to profile unique deletions and amplifications that are involved with tongue and cheek SCC, respectively. This was followed by pathway analysis relating to CNA genes from both sites.

    RESULTS: The most frequently amplified regions in tongue SCC were 4p16.3, 11q13.4, and 13q34; whereas the most frequently deleted region was 19p12. For cheek SCC, the most frequently amplified region was identified on chromosome 9p24.1-9p23; whereas the most common deleted region was located on chromosome 8p23.1. Further analysis revealed that the most significant unique pathway related to tongue and cheek SCCs was the cytoskeleton remodeling and immune response effect on the macrophage differentiation pathway.

    CONCLUSION: This study has showed the different genetic profiles and biological pathways between tongue and cheek SCCs. © 2013 Wiley Periodicals, Inc. Head Neck 36: 1268-1278, 2014.

  18. Thuya WL, Peyper JM, Myen TT, Anuar ND, Anwar A, Gudimella R, et al.
    Mil Med Res, 2024 Nov 18;11(1):72.
    PMID: 39558443 DOI: 10.1186/s40779-024-00575-y
  19. Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, et al.
    Hepatol Int, 2023 Aug;17(4):773-791.
    PMID: 37204656 DOI: 10.1007/s12072-023-10543-8
    BACKGROUND: Fatty liver disease in the absence of excessive alcohol consumption is an increasingly common condition with a global prevalence of ~ 25-30% and is also associated with cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies its pathogenesis, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been proposed for this condition. MAFLD is closely intertwined with obesity, type 2 diabetes mellitus and atherogenic dyslipidemia, which are established cardiovascular risk factors. Unlike CVD, which has received attention in the literature on fatty liver disease, the CVD risk associated with MAFLD is often underestimated, especially among Cardiologists.

    METHODS AND RESULTS: A multidisciplinary panel of fifty-two international experts comprising Hepatologists, Endocrinologists, Diabetologists, Cardiologists and Family Physicians from six continents (Asia, Europe, North America, South America, Africa and Oceania) participated in a formal Delphi survey and developed consensus statements on the association between MAFLD and the risk of CVD. Statements were developed on different aspects of CVD risk, ranging from epidemiology to mechanisms, screening, and management.

    CONCULSIONS: The expert panel identified important clinical associations between MAFLD and the risk of CVD that could serve to increase awareness of the adverse metabolic and cardiovascular outcomes of MAFLD. Finally, the expert panel also suggests potential areas for future research.

  20. Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, et al.
    PLoS One, 2013;8(2):e54705.
    PMID: 23405089 DOI: 10.1371/journal.pone.0054705
    Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links