Displaying publications 61 - 80 of 166 in total

Abstract:
Sort:
  1. Sim BM, Hong TS, Hanim MA, Tchan EN, Talari MK
    Materials (Basel), 2019 Oct 10;12(20).
    PMID: 31658593 DOI: 10.3390/ma12203285
    Duplex stainless steels (DSSs) are complex materials and they have been widely used in the marine environment and gas industries, primarily offering a better resistance of pitting corrosion and good mechanical properties. In the present work, the effects of heat treatment on duplex stainless steel (DSS) weld overlay samples that were heat treated at three different temperatures, namely 350 °C, 650 °C, and 1050 °C, and followed by air cooling and water quenching were studied. Stress relief temperature at 650 °C had induced sigma phase precipitation in between delta ferrite and austenite (δ/γ) grain boundaries, resulting in the loss of corrosion resistance in the weld metal. Interestingly, post weld heat treatment (PWHT) test samples that were reheated to solution annealing temperature had shown no weight loss. The ferrite count determination in the region of weld metal overlay increased at hydrogen relief and decreased at stress relief temperatures due to slow cooling, which is more favorable to austenite formation. The amount of ferrite in the weld metals was significantly reduced with the increment of solution anneal temperature to 1050 °C because of sufficient time for the formation of austenite and giving optimum equilibrium fraction in the welds.
    Matched MeSH terms: Ferric Compounds
  2. Samrot AV, Bhavya KS, Angalene JLA, Roshini SM, Preethi R, Steffi SM, et al.
    Int J Biol Macromol, 2020 Jun 15;153:1024-1034.
    PMID: 31751703 DOI: 10.1016/j.ijbiomac.2019.10.232
    Surface engineering of super paramagnetic iron oxide nanoparticles (SPIONs) favor the tagging of any molecule or compound onto it, encapsulating them with a biopolymer make them biocompatible and favor slow release of loaded molecules. Recovery of SPIONs is easier as they obey to external magnetic field. In this study, SPIONS were used for mosquito larvicidal activity after surface engineered with oleic acid to favor the tagging of Cyfluthrin (mosquito larvicidal agent), it was then encapsulated with gum polysaccharide derived from Azadirachta indica and Araucaria heterophylla. Every stage of coreshell formation was microscopically and spectroscopically characterized. The coreshell SPIONs produced using Azadirachta indica and Araucaria heterophylla gum derived polysaccharide encapsulation were found to be the size around 80 nm. Thus, prepared coreshell SPIONs was subjected for mosquito larvicidal activity against Culex sp. The coreshell SPIONs was efficiently killing the mosquito larva and its impact was studied by percentage mortality studies.
    Matched MeSH terms: Ferric Compounds
  3. Baba Musta, Mohamad Md. Tan
    Highly weathered basaltic rock was exposed at PSK profile of Kuantan, Segamat Highway. The weathering profile from fresh rock soil can be observed at PKJ profile at Kg. Jabi Quarry. Twelve rock and soil samples from PSK profile and thirteen samples from PKJ profile have been collected for geochemical analysis. The objective of the analysis is to establish the behaviour of several major and trace elements in the weathering profile of the basaltic rock. The samples were analysed by XRF and XRD techniques. Petrographic study was done on fresh rock samples and concretions. The concentration of major elements (TiO2, Al2O3 and Fe2O3) appear to be increased with the increasing of the degree of weathering whereas the concentration of SiO2 and CaO are decreased. There is a clear correlation between Fe2O3 + Al2O3 with L.O.I as well as between Fe2O3 with Al2O3. Behaviour of the trace elements (Ni, Co, Cr and Zn) against the weathering process are totally different. The secondary minerals (kaolinite, nactire, geothite, hematite and gibbsite) appear to control the behaviour of the major and trace elements.
    Batuan basalt yang terluluhawa sepenuhnya telah dicerap di lokaliti PSK Lebuhraya Segamat-Kuantan. Profil luluhawa yang boleh dilihat perubahan daripada batuan segar hingga tanih didapati di lokaliti PKJ Kuari Kg. Jabi. Dua contoh profil dengan masing-masing 12 sampel dan 13 sample tanih telah dikaji untuk menentukan perlakuan beberapa unsur major dan unsur surih batuan basalt yang terluluhawa. Kaedah analisis yang digunakan ialah pendarflour sinar-X (XRF) dan pembelauan sinar-X (XRF). Kajian petrografi pula dibuat pada sampel batuan segar dan sampel konkresi. Nilai unsur major TiO2, Al2O3 dan Fe2O3 bertambah dengan bertambahnya darjah luluhawa manakala SiO2 dan CaO menyusut. Hubungan korelasi Fe2O3 + Al2O3 dengan L.O.I dan Fe2O3 denagn Al2O3 adalah jelas. Unsur surih nikel (Ni) kobalt (Co), kromium (Cr) dan zink (Zn) mempunyai perlakuan yang berbeza-beza dengan luluhawa. Perlakuan yang ditunjukkan oleh unsur major dan surih tersebut dikawal oleh mineral sekunder (koalinit, nakrit, geotit, hematit dan gibsit).
    Matched MeSH terms: Ferric Compounds
  4. Mensah EE, Abbas Z, Azis RS, Khamis AM
    Materials (Basel), 2019 May 24;12(10).
    PMID: 31137736 DOI: 10.3390/ma12101696
    The purpose of this study was to synthesize high-quality recycled α-Fe2O3 to improve its complex permittivity properties by reducing the particles to nanosize through high energy ball milling. Complex permittivity and permeability characterizations of the particles were performed using open-ended coaxial and rectangular waveguide techniques and a vector network analyzer. The attenuation characteristics of the particles were analyzed with finite element method (FEM) simulations of the transmission coefficients and electric field distributions using microstrip model geometry. All measurements and simulations were conducted in the 8-12 GHz range. The average nanoparticle sizes obtained after 8, 10 and 12 h of milling were 21.5, 18, and 16.2 nm, respectively, from an initial particle size of 1.73 µm. The real and imaginary parts of permittivity increased with reduced particle size and reached maximum values of 12.111 and 0.467 at 8 GHz, from initial values of 7.617 and 0.175, respectively, when the particle sizes were reduced from 1.73 µm to 16.2 nm. Complex permeability increased with reduced particle size while the enhanced absorption properties exhibited by the nanoparticles in the simulations confirmed their ability to attenuate microwaves in the X-band frequency range.
    Matched MeSH terms: Ferric Compounds
  5. Chia CH, Sarani Zakaria, Farahiyan R, Liew TK, Nguyen KL, Mustaffa Abdullah, et al.
    Sains Malaysiana, 2008;37:233-237.
    Magnetite (Fe3O4) nanoparticles have been synthesized using the chemical coprecipitation method. The Fe3O4 nanoparticles were likely formed via dissolution-recrystallization process. During the precipitation process, ferrihydrite and Fe(OH)2 particles formed aggregates and followed by the formation of spherical Fe3O4 particles. The synthesized Fe3O4 nanoparticles exhibited superparamagnetic behavior and in single crystal form. The synthesis temperature and the degree of agitation during the precipitation were found to be decisive in controlling the crystallite and particle size of the produced Fe3O4 nanoparticles. Lower temperature and higher degree of agitation were the favorable conditions for producing smaller particle. The magnetic properties (saturation magnetization and coercivity) of the Fe3O4 nanoparticles increased with the particle size.
    Matched MeSH terms: Ferric Compounds
  6. Rahman MM, Adil M, Yusof AM, Kamaruzzaman YB, Ansary RH
    Materials (Basel), 2014 May 07;7(5):3634-3650.
    PMID: 28788640 DOI: 10.3390/ma7053634
    In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.
    Matched MeSH terms: Ferric Compounds
  7. Ahmad SZN, Al-Gheethi A, Hamdan R, Othman N
    Environ Sci Pollut Res Int, 2020 Oct;27(28):35184-35194.
    PMID: 32583114 DOI: 10.1007/s11356-020-09582-7
    The current study aimed to investigate the efficiencies and mechanisms of slag filter media for removing phosphorus from synthetic wastewater. The steel slag with high ferric oxides (Fe2O3) was subjected for the electric arc furnace (EAF) and selected as the filter media (HFe). The chemical characteristics of HFe were determined using pH, point of zero charge (PZC) and XRF. The phosphorus removal efficiency was studied in a designed vertical steel slag column rock filters in unaerated HFe (UEF) and aerated HFe (AEF) system. The microstructure of HFe was analyzed by FTIR, XRD and SEM-EDX analysis. The results of XRF revealed that ferric oxide (Fe2O3) ranged from 26.1 to 38.2%. PZC for Filter HFe was recorded at pH 10.55 ± 0.27. The highest efficiencies were recorded by UEF and AEF systems at pH 3 and pH 5 (89.97 ± 4.02% and 79.95 ± 6.25% at pH 3 and 72.97 ± 8.38% and 66.00 ± 12.85% at pH 5 for UEF and AEF, respectively). These findings indicated that AEF exhibiting higher removal than UEF systems might be due to presence high Fe concentration in AEF which play important role in the phosphorus removal. The main elements available on the surface of HFe included carbon, oxygen, iron, calcium, magnesium, silicon, platinum, sulphur, manganese, titanium and aluminium. The XRD analysis indicated that the precipitation of orthophosphate as calcium and iron-phosphates was the removal mechanism as confirmed using FT-IR analysis. These findings demonstrated the efficiency of HFe in removing of phosphorus from wastewater.
    Matched MeSH terms: Ferric Compounds
  8. Ng KA, Low KH, Tay KS
    Water Environ Res, 2023 Apr;95(4):e10862.
    PMID: 37032435 DOI: 10.1002/wer.10862
    The combination of UV and water-soluble Fe(III) complexes is an effective method for generating Fe(II) in situ for activating advanced oxidation processes. This study explored the potential of Fe(III)-diethylenetriaminepentaacetic acid (Fe(III)-DTPA) and Fe(III)-ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (Fe(III)-EGTA) in activating the UV/persulfate (UV/PS) for sulfamethazine removal. The initial screening showed that Fe(III)-EGTA and Fe(III)-DTPA could significantly improve the rate of sulfamethazine removal. The optimum molar ratios of persulfate to Fe(III)-DTPA and Fe(III)-EGTA were 100:1 and 100:2.5. The predicted percentage of sulfamethazine removal under the optimized conditions, obtained using response surface methodology, was ~99% for both catalysts. The pH range of 6 to 8 did not significantly affect the performance of UV/PS in the removal of sulfamethazine. The percentage sulfamethazine removal in the selected water samples was ranged from 93.6% to 99.6%, agreeing with the predicted value. The performance of both catalysts in activating UV/PS is comparable with that of the frequently used Fe(III)-EDDS. PRACTITIONERS POINTS: The potential of Fe(III)-DTPA and Fe(III)-EGTA in activating UV/persulfate (UV/PS) was explored. Fe(III)-DTPA and Fe(III)-EGTA improved the performance of UV/PS in sulfamethazine removal. Fe(III)-DTPA and Fe(III)-EGTA are effective in catalyzing UV/PS under pH 6 to 8. The performance of Fe(III)-DTPA and Fe(III)-EGTA is comparable with well-studied Fe(III)-EDDS.
    Matched MeSH terms: Ferric Compounds
  9. Ahmadipourroudposht M, Fallahiarezoudar E, Yusof NM, Idris A
    Mater Sci Eng C Mater Biol Appl, 2015 May;50:234-41.
    PMID: 25746266 DOI: 10.1016/j.msec.2015.02.008
    Magnetic nanofibers are composed of good dispersion of magnetic nanoparticles along an organic material. Magnetic nanofibers are potentially useful for composite reinforcement, bio-medical and tissue engineering. Nanofibers with the thinner diameter have to result in higher rigidity and tensile strength due to better alignments of lamellae along the fiber axis. In this study, the performance of electrospinning process was explained using response surface methodology (RSM) during fabrication of magnetic nanofibers using polyvinyl alcohol (PVA) as a shelter for (γ-Fe2O3) nanoparticles where the parameters investigated were flow rate, applied voltage, distance between needle and collector and collector rotating speed. The response variable was diameter distribution. The two parameters flow rate and applied voltage in primary evaluation were distinguished as significant factors. Central composite design was applied to optimize the variable of diameter distribution. Quadratic estimated model developed for diameter distribution indicated the optimum conditions to be flow rate of 0.25 ml/h at voltage of 45 kV while the distance and rotating speed are at 8 cm and 1500 rps respectively. The obtained model was verified successfully by the confirmation experiments.
    Matched MeSH terms: Ferric Compounds/chemistry*
  10. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(1):91-9.
    PMID: 25492234 DOI: 10.5650/jos.ess14161
    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard.
    Matched MeSH terms: Ferric Compounds/chemistry*
  11. Nazarbahjat N, Nordin N, Abdullah Z, Abdulla MA, Yehye WA, Halim SN, et al.
    Molecules, 2014;19(8):11520-37.
    PMID: 25093989 DOI: 10.3390/molecules190811520
    New thiosemicarbazide derivatives 2-6 were synthesised by reacting 2-(ethylsulfanyl)benzohydrazide with various aryl isothiocyanates. The cyclisation of compounds 2-6 under reflux conditions in a basic medium (aqueous NaOH, 4 N) yielded compounds 7-11 that contain a 1,2,4-triazole ring. All of the synthesised compounds were screened for their antioxidant activities. Compounds 2, 3, and 7 showed better radical scavenging in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with IC50 values of 1.08, 0.22, and 0.74 µg/mL, respectively, compared to gallic acid (IC50, 1.2 µg/mL). Compound 3 also showed superior results in a ferric reducing antioxidant power (FRAP) assay (3054 µM/100 g) compared to those of ascorbic acid (1207 µM/100 g).
    Matched MeSH terms: Ferric Compounds/chemistry
  12. Kee CH, Ariffin A, Awang K, Noorbatcha I, Takeya K, Morita H, et al.
    Molecules, 2011 Aug 25;16(9):7267-87.
    PMID: 21869754 DOI: 10.3390/molecules16097267
    The n-butyramido, isobutyramido, benzamido, and furancarboxamido functions profoundly modulate the electronics of the stilbene olefinic and NH groups and the corresponding radical cations in ways that influence the efficiency of the cyclization due presumably to conformational and stereoelectronic factors. For example, isobutyramido- stilbene undergoes FeCl(3) promoted cyclization to produce only indoline, while n-butyramidostilbene, under the same conditions, produces both indoline and bisindoline.
    Matched MeSH terms: Ferric Compounds/chemistry
  13. Panneerselvam P, Morad N, Tan KA
    J Hazard Mater, 2011 Feb 15;186(1):160-8.
    PMID: 21146294 DOI: 10.1016/j.jhazmat.2010.10.102
    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe(3)O(4)-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe(3)O(4)) were prepared by chemical precipitation of a Fe(2+) and Fe(3+) salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe(3)O(4) were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90×10(-2) min(-1) at 100 mg L(-1) and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L(-1). It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q°, was found to be (38.3)mgg(-1). The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.
    Matched MeSH terms: Ferric Compounds/chemistry*
  14. Gan S, Ng HK, Ooi CW, Motala NO, Ismail MA
    Bioresour Technol, 2010 Oct;101(19):7338-43.
    PMID: 20435468 DOI: 10.1016/j.biortech.2010.04.028
    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).
    Matched MeSH terms: Ferric Compounds/chemistry*
  15. Ahmad N, Maitra S, Dutta BK, Ahmad F
    J Environ Sci (China), 2009;21(12):1735-40.
    PMID: 20131606
    Oxidation of sulfide in aqueous solution by hydrogen peroxide was investigated in the presence of hydrated ferric oxide catalyst. The ferric oxide catalyst was synthesized by sol gel technique from ferric chloride and ammonia. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy, X-Ray diffraction analysis, scanning electrom microscope and energy dispersive X-ray analysis. The catalyst was quite effective in oxidizing the sulfide by hydrogen peroxide. The effects of sulfide concentration, catalyst loading, H2O2 dosing and temperature on the kinetics of sulfide oxidation were investigated. Kinetic equations and activation energies for the catalytic oxidation reaction were calculated based on the experimental results.
    Matched MeSH terms: Ferric Compounds/chemical synthesis*
  16. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Ferric Compounds/analysis*
  17. Saed K, Noor MJ, Abdullah AG, Salim MR, Nagaoka H, Aya H
    PMID: 15332674
    An evaluation of two commonly used coagulants, alum and ferric chloride was conducted to treat retention pond water using microfiltration. To determine the effectiveness of these coagulants in removing turbidity, color, and total suspended solids two different sets of the experiments were performed. Preliminary test was carried out to evaluate the optimum dosages of coagulants. Optimum turbidity removal was achieved with a 4 and 20 mg/L dosage for ferric chloride and alum, respectively. Generally, coupling microfiltration with coagulation using both alum and ferric chloride exhibited excellent effectiveness for turbidity, color, and total suspended solids removal. The efficiency for alum and ferric chloride for turbidity removal were 96 and 98%, respectively, which was greater than 89% removal using microfiltration alone. Furthermore, microfiltration only demonstrated 81 and 83% removal efficiency for color and total suspended solids removal, respectively. However, microfiltration-coagulation using alum and ferric chloride resulted about 83 and 93% color removal, and 92 and 94% total suspended solids removal, respectively.
    Matched MeSH terms: Ferric Compounds/chemistry
  18. Ba-Abbad MM, Kadhum AA, Mohamad AB, Takriff MS, Sopian K
    Chemosphere, 2013 Jun;91(11):1604-11.
    PMID: 23384541 DOI: 10.1016/j.chemosphere.2012.12.055
    The optical properties of a ZnO photocatalyst were enhanced with various dopant concentrations of Fe(3+). Doped ZnO nanoparticles were synthesized via a sol-gel method without the use of capping agents or surfactants and was then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that ZnO has a wurtzite, hexagonal structure and that the Fe(3+) ions were well incorporated into the ZnO crystal lattice. As the Fe(3+) concentration increased from 0.25 wt.% to 1 wt.%, the crystal size decreased in comparison with the undoped ZnO. The spectral absorption shifts of the visible light region (red shift) and the band gap decreases for each Fe-ZnO sample were investigated. The photocatalytic activities of the ZnO and Fe-ZnO samples were evaluated based on the degradation of 2-chlorophenol in aqueous solution under solar radiation. The samples with a small concentration of Fe(3+) ions showed enhanced photocatalytic activity with an optimal maximum performance at 0.5 wt.%. The results indicated that toxicity removal of 2-chlorophenol at same line of degradation efficiency. Small crystallite size and low band gap were attributed to high activities of Fe-ZnO samples under various concentrations of Fe(3+) ions compared to undoped ZnO.
    Matched MeSH terms: Ferric Compounds/radiation effects*
  19. Ngadiman NH, Mohd Yusof N, Idris A, Kurniawan D
    Proc Inst Mech Eng H, 2016 Aug;230(8):739-49.
    PMID: 27194535 DOI: 10.1177/0954411916649632
    Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.
    Matched MeSH terms: Ferric Compounds/chemistry*
  20. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(5):505-14.
    PMID: 25843280 DOI: 10.5650/jos.ess14228
    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
    Matched MeSH terms: Ferric Compounds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links