This study was aimed to evaluate the effect of Strobilanthes crispus extract for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H(2)O(2)). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H(2)O(2)-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Incubation of postmitochondrial supernatant and/or calf thymus DNA with H(2)O(2) (40 mM) in the presence of Fe-NTA (0.1 mM) induces lipid peroxidation and DNA damage to about 2.3-fold and 2.9-fold, respectively, as compared to control (P < 0.05). In lipid peroxidation protection studies, S. crispus treatment showed a dose-dependent inhibition (45-53% inhibition, P < 0.05) of Fe-NTA and H(2)O(2) induced lipid peroxidation. Similarly, in DNA damage protection studies, S. crispus treatment also showed a dose-dependent inhibition (18-30% inhibition, P < 0.05) of DNA damage. In addition, the protection was closely related to the content of phenolic compounds as evident by S. crispus extract showing the value of 124.48 mg/g total phenolics expressed as gallic acid equivalent (GAE, mg/g of extract). From these studies, it is concluded that S. crispus inhibits peroxidation of membrane lipids and DNA damage induced by Fe-NTA and H(2)O(2) and possesses the potential to be used to treat or prevent degenerative diseases where oxidative stress is implicated.
Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357-366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33-38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151-160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.
Probucol is a clinically used cholesterol-lowering drug, with pronounced antioxidant properties. We have reported previously, that dietary supplementation of probucol enhances NAD(P)H:quinone reductase (Iqbal M, Okada S (2003) Pharmacol Toxicol 93:259-263) and inhibits Fe-NTA induced lipid peroxidation and DNA damage in vitro (Iqbal M, Sharma SD, Oakada (2004) Redox Rep 9:167-172). Further to this, in the present study, we evaluated the modulatory effect of probucol on iron nitrilotriacetae (Fe-NTA) dependent renal carcinogenesis, hyperproliferative response and oxidative stress. In Fe-NTA alone treated group, a 20% renal cell tumor incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA promoted animals, the percentage tumor incidence was increased to 70% as compared with untreated controls. No tumor incidence was recorded in DEN-initiated, nonpromoted group. Diet supplemented with 1.0% probucol fed prior to, during and after Fe-NTA treatment in DEN-initiated animals afforded >65% protection in renal cell tumor incidence. Probucol fed diet pretreatment also resulted a significant and dose dependent inhibition of Fe-NTA induced renal ornithine decarboxylase (ODC) activity. In oxidative stress studies, Fe-NTA alone treatment enhanced lipid peroxidation, accompanied by a decrease in the level of GSH, activities of antioxidants and phase II metabolizing enzymes in kidney concomitant with histolopathological changes. These changes were significantly and dose-dependently alleviated by probucol fed diet. From this data, it can be concluded that probucol can modulates toxic and tumor promoting effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant induced tissue injury and carcinogenesis, in addition to being a cholesterol lowering and anti-atherogenic drug.
Water contamination by herbicides and chelating agents is increasing mainly due to the
increasing agricultural activities. Water contamination by these compounds has become a
concern due to their adverse effects to the environment and humans. Seven sampling sites of
water sources in Selangor and Johor were chosen for the study. Contamination level of
Mecoprop (MCCP), Nitrilotriacetic acid (NTA) and Ethylenediaminetetraacetic acid (EDTA) in
these water body areas was determined by using Gas Chromatography-Electron Capture
Detector (GC-ECD). Our results indicated that water samples of Sungai Melot in Selangor
showed the highest presence of EDTA. MCCP was detected at a high level at Sungai Sarang
Buaya, Johor while NTA showed similar level of concentration at three different sites, Ladang
10, Ladang Sayur and Mardi, Selangor.
1. Free radicals generated by ferric nitrilotriacetate (FeNTA) can activate osteoclastic activity and this is associated with elevation of the bone resorbing cytokines interleukin (IL)-1 and IL-6. In the present study, we investigated the effects of 2 mg/kg FeNTA (2 mg iron/kg) on the levels of serum IL-1 and IL-6 with or without supplementation with a palm oil tocotrienol mixture or alpha-tocopherol acetate in Wistar rats. 2. The FeNTA was found to elevate levels of IL-1 and IL-6. Only the palm oil tocotrienol mixture at doses of 60 and 100 mg/kg was able to prevent FeNTA-induced increases in IL-1 (P < 0.01). Both the palm oil tocotrienol mixture and alpha-tocopherol acetate, at doses of 30, 60 and 100 mg/kg, were able to reduce FeNTA-induced increases in IL-6 (P < 0.05). Therefore, the palm oil tocotrienol mixture was better than pure alpha-tocopherol acetate in protecting bone against FeNTA (free radical)-induced elevation of bone-resorbing cytokines. 3. Supplementation with the palm oil tocotrienol mixture or alpha-tocopherol acetate at 100 mg/kg restored the reduction in serum osteocalcin levels due to ageing, as seen in the saline (control) group (P < 0.05). All doses of the palm oil tocotrienol mixture decreased urine deoxypyridinoline cross-link (DPD) significantly compared with the control group, whereas a trend for decreased urine DPD was only seen for doses of 60 mg/kg onwards of alpha-tocopherol acetate (P < 0.05). 4. Bone histomorphometric analyses have shown that FeNTA injections significantly lowered mean osteoblast number (P < 0.001) and the bone formation rate (P < 0.001), but raised osteoclast number (P < 0.05) and the ratio of eroded surface/bone surface (P < 0.001) compared with the saline (control) group. Supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent all these FeNTA-induced changes, but a similar dose of alpha-tocopherol acetate was found to be effective only for mean osteoclast number. Injections of FeNTA were also shown to reduce trabecular bone volume (P < 0.001) and trabecular thickness (P < 0.05), whereas only supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent these FeNTA-induced changes.
This study was designed to reveal the protective effects of dietary supplementation of curcumin against renal cell tumours and oxidative stress induced by renal carcinogen iron nitrilotriacetate (Fe-NTA) in ddY male mice. The results showed that mice treated with a renal carcinogen, Fe-NTA, a 35% renal cell tumour incidence was noticed, whereas renal cell tumour occurrence was elevated to 80% in Fe-NTA promoted and N-diethylnitrosamine (DEN)-initiated mice as compared with saline- treated mice. No incidence of tumours has been observed in DEN-initiated non-promoted mice. Diet complemented with 0.5% and 1.0% curcumin fed prior to, during and after treatment with Fe-NTA in DEN-initiated animals, tumour incidence was reduced dose-dependently to about 45% and 30% respectively. Immunohistochemical studies also revealed the increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in kidney tissue of mice treated with an intraperitoneal injection of Fe-NTA (6.0 mg Fe/kg body weight.). Furthermore, Fe-NTA treatment of mice also resulted in significant elevation of malondialdehyde (MDA), serum urea, and creatinine and decreases renal glutathione. However, the changes in most of these parameters were attenuated dose-dependently by prophylactic treatment of animals with 0.5% and 1% curcumin diet, this may be due to its antioxidative impact of curcumin. These results suggest that intake of curcumin is beneficial for the prevention of renal cell tumours and oxidative stress damage mediated by renal carcinogen, Fe-NTA.
Ferric nitrilotriacetate (Fe-NTA) induces tissue necrosis as a result of lipid peroxidation (LPO) and oxidative damage that leads to high incidence of renal carcinomas. The present study was undertaken to evaluate the effect of diallyl sulphide (DAS) against Fe-NTA-induced nephrotoxicity. A total of 30 healthy male rats were randomly divided into 5 groups of 6 rats each: (1) control, (2) DAS (200 mg kg(-1)), (3) Fe-NTA (9 g Fe kg(-1)), (4) DAS (100 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)) and (5) DAS (200 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)). Fe-NTA + DAS-treated groups were given DAS for a period of 1 week before Fe-NTA administration. The intraperitoneal administration of Fe-NTA enhanced blood urea nitrogen and creatinine levels with reduction in levels of antioxidant enzymes. However, significant restoration of depleted renal glutathione and its dependent enzymes (glutathione reductase and glutathione-S-transferase) was observed in DAS pretreated groups. DAS also attenuated Fe-NTA-induced increase in LPO, hydrogen peroxide generation and protein carbonyl formation (p < 0.05). The results indicate that DAS may be beneficial in ameliorating the Fe-NTA-induced renal oxidative damage in rats.
Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p < 0.001) in animals receiving a pretreatment of DAS. DAS protected against hepatic lipid peroxidation, hydrogen peroxide generation, preserved GSH levels, and GSH metabolizing enzymes to 60-80% as compared to Fe-NTA alone-treated group. Present data suggest that DAS can ameliorate the toxic effects of Fe-NTA and suppress oxidant-induced tissue injury and hepatotoxicity in rats.