Displaying publications 61 - 80 of 88 in total

Abstract:
Sort:
  1. Tan CH, Wong KY, Tan KY, Tan NH
    J Proteomics, 2017 08 23;166:48-58.
    PMID: 28688916 DOI: 10.1016/j.jprot.2017.07.002
    The venom proteome of Laticauda colubrina (Bali, Indonesia) was elucidated by nano-ESI-LCMS/MS of the venom reverse-phase HPLC fractions. Altogether 31 distinct forms of proteins were identified and clustered into three toxin families: three-finger toxin (3FTX, 66.12% of total venom proteins), phospholipase A2 (PLA2, 33.26%) and cysteine-rich secretory protein (CRiSP, 0.05%). The 3FTX were α-neurotoxins (five long neurotoxins, LNTX, 48.87%; two short neurotoxins, SNTX, 16.94%) and a trace amount of two cytotoxins (CTX, 0.31%). PLA2 were present with a large diversity of homologues (≥20 forms), however none was annotated to the lethal proteoform reported previously. The venom is highly lethal in mice (LD50=0.10μg/g) and this is driven primarily by the SNTX and LNTX (LD50=0.05-0.13μg/g), since the PLA2 proteins were non-lethal up to 2μg/g (20-time the venom LD50). The SNTX and LNTX were effectively cross-neutralized by the heterologous Sea Snake Antivenom (SSAV, Australian product) (potency=0.27mg toxin per ml antivenom, and 0.40mg/ml, respectively), corroborating the cross-neutralization of the whole venom (potency=1.09mg/ml) and its antigenic immunoreactivity toward SSAV. Furthermore, compared with earlier studies, the present work reveals geographical variation of venom composition for L. colubrina which may have implication for the evolution and conservation of the species.

    BIOLOGICAL SIGNIFICANCE: Laticauda colubrina (yellow-lipped sea krait) is a widely distributed, semi-aquatic venomous snake species. The venom proteome at the level of protein family is unsophisticated and consistent with its restricted prey selection. Nonetheless, the subproteomic findings revealed geographical variability of the venom for this widely distributed species. In contrast to two previous reports, the results for the Balinese L. colubrina venom showed that LNTX Neurotoxin a and Neurotoxin b were co-existent while the PLA2 lethal subtype (PLA-II) was undetected by means of LCMS/MS and by in vivo assay. This is an observable trait of L. colubrina considered divergent from specimens previously studied for the Philippines and the Solomon Islands. The stark geographical variation might be reflective of trophic adaptation following evolutionary arms race between the snake and the prey (eels) in different localities. The preferred trait would likely propagate and remain significant within the geographical population, since the strong behaviour of site fidelity in the species would have minimized gene flow between distant populations. Meanwhile, the in vivo neutralization study verified that the efficacy of the heterologous Sea Snake Antivenom (Australian product) is attributable to the cross-neutralization of SNTX and LNTX, two principal lethal toxins that made up the bulk of L. colubrina venom proteins. The findings also implied that L. colubrina, though could be evolutionarily more related to the terrestrial elapids, has evolved a much streamlined, neurotoxin- and PLA2-predominated venom arsenal, with major antigenicity shared among the true sea snakes and the Australo-Papuan elapids. The findings enrich our current understanding of the complexity of L. colubrina venom and the neutralizing spectrum of antivenom against the principal toxins from this unique elapid lineage.

    Matched MeSH terms: Antivenins/immunology*
  2. Hia YL, Tan KY, Tan CH
    Acta Trop, 2020 Jul;207:105460.
    PMID: 32278639 DOI: 10.1016/j.actatropica.2020.105460
    The banded krait, Bungarus fasciatus is a medically important venomous snake in Asia. The wide distribution of this species in Southeast Asia and southern China indicates potential geographical variation of the venom which may impact the clinical management of snakebite envenomation. This study investigated the intraspecific venom variation of B. fasciatus from five geographical locales through a venom decomplexing proteomic approach, followed by toxinological and immunological studies. The venom proteomes composed of a total of 9 toxin families, comprising 22 to 31 proteoforms at varying abundances. The predominant proteins were phospholipase A2 (including beta-bungarotoxin), Kunitz-type serine protease inhibitor (KSPI) and three-finger toxins (3FTx), which are toxins that cause neurotoxicity and lethality. The venom lethality varied with geographical origins of the snake, with intravenous median lethal doses (LD50) ranging from 0.45-2.55 µg/g in mice. The Thai Bungarus fasciatus monovalent antivenom (BFMAV) demonstrated a dose-dependent increasing immunological binding activity toward all venoms; however, its in vivo neutralization efficacy varied vastly with normalized potency values ranging from 3 to 28 mg/g, presumably due to the compositional differences of dominant proteins in the different venoms. The findings support that antivenom use should be optimized in different geographical areas. The development of a pan-regional antivenom may be a more sustainable solution for the treatment of snakebite envenomation.
    Matched MeSH terms: Antivenins/immunology*
  3. Bala AA, Jatau AI, Yunusa I, Mohammed M, Mohammed AH, Isa AM, et al.
    Ther Adv Drug Saf, 2020;11:2042098620935721.
    PMID: 32944213 DOI: 10.1177/2042098620935721
    Introduction: Snakebite envenoming (SBE) is an important occupational and public health hazard especially in sub-Saharan Africa. For optimum management of SBE, adequate knowledge of Snake antivenom (SAV) is very critical among the healthcare practioners in this region. Information related to the knowledge of SAV use in the management of SBE, as well as SAV logistics is scarce among the Health Care Professionals (HCPs) in Nigeria, particularly in the northern region. We therefore aimed to develop, validate and utilize a tool to assess the SAV knowlegde among HCPs in northern Nigeria. We also sought to implement and evaluate an intervention that could improve the SAV knowledge among the HCPs.

    Methods: The proposed study will be conducted in three phases: Phase I will involve the development of the item-pool to be included in the tool, followed by a face, content validity and construct validity. The tool reliability, readability and difficulty index will be determined. Phase II will involve the utilization of the tool to assess baseline SAV knowledge among the HCPs followed by an educational intervention. Multiple Linear Regression analysis will be used to determine the factors associated with SAV knowledge among the HCPs. Lastly, Phase III which will be a repeat of Phase II to assess and evaluate the knowledge after the intervention.

    Discussion: The study design and findings may guide future implementation and streamline the intervention of improving SAV knowledge in HCPs training and practice.

    Lay Summary: Knowledge assessment and educational intervention of snake antivenom among healthcare practitioners in northern Nigeria: a study protocol Snakebite envenoming (SBE) is an important occupational and public health hazard especially in sub-Saharan Africa. For optimum management of SBE, adequate knowledge of snake antivenom (SAV) is very critical among the healthcare practitioners. The baseline knowledge SAV dosage, mode of administration, availability, and logistics is very relevant among healthcare professionals, particularly those that are directly involved in its logistics. It is paramount that SAV is handled and used appropriately. The efforts and advocacy for the availability for more SAV will be in vain if not handled appropriately before they are used. This study protocol aims to develop a tool, to assess SAV knowledge and effects of educational interventions among healthcare professionals (HCPs) in northern Nigeria. This protocol suggests conducting studies in three phases: (a) Development and validation of SAV knowledge assessment tool, (b) Baseline assessment of SAV knowledge assessment tool among HCPs, and (c) Development, implementation and evaluation of an educational intervention to improve SAV knowledge among HCPs in northern Nigeria.

    Matched MeSH terms: Antivenins
  4. Lui, Sze Yee, Noor Zuraini Abu Bakar, Ida Zaliza Zainol Abidin
    MyJurnal
    The clinical diagnosis of snakebite is critical, particularly in Southeast Asia where venomous snakebites are a public health concern. Additionally, cases involving unwitnessed snakebite with no species identification, especially in non-verbal children posed a challenge in the emergency setting. A 2-year-2-month-old boy presented to our emergency department with signs of neurotoxicity. He was restless and mildly bradypnoeic with the respiratory rate of 24 to 28 breaths per minute. He also had bilateral ptosis with absent gag reflex. There were faint fang marks noted over the medial aspect of his left ankle with local swelling and bruises, despite no history of animal bite and no eyewitness. A high index of suspicion of neurotoxic envenomation was prompted and a total of 6 vials of neuro-polyvalent anti-venom were administered in scheduled batches. Progressive clinical recovery was subsequently observed after the first batch of anti-venom administration. The case illustrated the importance of clinical recognition of neurotoxic envenomation in the absence of snake bite history or species identification. Early administration of anti-venom may potentially reverse the neurotoxic effects of systemic envenomation and saves lives.
    Matched MeSH terms: Antivenins
  5. Bala AA, Jatau AI, Yunusa I, Mohammed M, Mohammed AH, Isa AM, et al.
    Toxicon X, 2020 Dec;8:100064.
    PMID: 33319211 DOI: 10.1016/j.toxcx.2020.100064
    Antisnake venom (ASV) is the only specific and standard treatment for snakebite envenoming worldwide. The knowledge of antivenom dosage, mode of administration, availability, and logistics is essential to the healthcare practitioners (HCPs) in the management of snakebites. It is vital for the HCPs involved in the handling of ASVs to have its basic knowledge. The ASV contains proteins and can, therefore, easily get denatured if not handled appropriately, leading to poor therapeutic outcome. It is also essential for clinicians to be aware of the tendency of ASV to cause a severe life-threatening hypersensitivity reaction. There is currently no validated tool for assessing the knowledge of ASV among HCPs. Therefore, we developed and validated a tool for evaluating the HCPs knowledge of ASV. The items included in the tool were first generated from a comprehensive literature review. Face validity were conducted by presenting the drafted tool to ten experts on the subject matter. A validation study was conducted among doctors, pharmacists, nurses, pharmacy technicians, and the general public. The objectives of the study were to test the tool for content validity using the content validity index (CVI), construct validity using contrast group approach, difficulty index, readability, and reliability test using the test-retest method. We developed and validated a final tool containing thirty-three items. The tool was valid for face validity and had a scale-level (average) content validity (S-CVI/Ave) of 0.91. The ASV knowledge of pharmacists was higher than that of doctors, pharmacy technicians, nurses, and the general public (p 
    Matched MeSH terms: Antivenins
  6. Haida Z, Nakasha JJ, Hakiman M
    Plants (Basel), 2020 Aug 14;9(8).
    PMID: 32823824 DOI: 10.3390/plants9081030
    Clinacanthus nutans, commonly known as Sabah snake grass, is one of the more important medicinal plants in Malaysia's herbal industry. C. nutans has gained the attention of medical practitioners due to its wide range of bioactive compounds responsible for various biological activities, such as anti-cancer, anti-venom and anti-viral activities. Due to its high pharmacological properties, the species has been overexploited to meet the demands of the pharmaceutical industry. The present study was conducted to establish a suitable in vitro culture procedure for the mass propagation of C. nutans. Murashige and Skoog (MS) basal medium, supplemented with different types of cytokinins, auxins, basal medium strength and sucrose concentrations, were tested. Based on the results, a full-strength MS basal medium supplemented with 12 µM 6-benzylaminopurine (BAP) and 30 g/L sucrose was recorded as the best outcome for all the parameters measured including the regeneration percentage, number of shoots, length of shoots, number of leaves and fresh weight of leaves. In the analysis of the phenolics content and antioxidant activities, tissue-cultured leaf extracts assayed at 100 °C exhibited the highest phenolic content and antioxidant activities. The propagation of C. nutans via a plant tissue culture technique was recorded to be able to produce high phenolic contents as well as exhibit high antioxidant activities.
    Matched MeSH terms: Antivenins
  7. Tan CH, Liew JL, Chong HP, Tan NH
    Biologicals, 2021 Jan;69:22-29.
    PMID: 33431232 DOI: 10.1016/j.biologicals.2020.12.004
    The quality of antivenom is governed by its safety and efficacy profiles. These quality characteristics are much influenced by the purity of antivenom content. Rigorous assessment and meticulous monitoring of antivenom purity at the preclinical setting is hence crucial. This study aimed to explore an integrative proteomic method to assess the physicochemical purity of four commercially available antivenoms in the region. The antivenoms were subjected to Superdex 200 HR 10/30 size-exclusion fast-protein liquid chromatography (SE-FPLC). The proteins in each fraction were trypsin-digested and analyzed by nano-ESI-liquid chromatography-tandem mass spectrometry (LC-MS/MS). SE-FPLC resolved the antivenom proteins into three major protein components of very high (>200 kDa), high (100-120 kDa) and medium (<60 kDa) molecular weights. The major components (80-95% of total proteins) in the antivenoms were proteins of 100-120 kDa consisting of mainly the light and partially digested heavy immunoglobulin chains, consistent with F(ab')2 as the active principle of the antivenoms. However, LC-MS/MS also detected substantial quantity of large proteins (e.g. alpha-2-macroglobulins), immunoglobulin aggregates and impurities e.g. albumins in some products. The method is practical and able to unveil the quantitative and qualitative aspects of antivenom protein compositions. It is therefore a potentially useful preclinical assessment tool of antivenom purity.
    Matched MeSH terms: Antivenins
  8. Fuchs J, Bessire K, Weiler S
    Toxicon, 2019 Mar 20;163:44-47.
    PMID: 30902684 DOI: 10.1016/j.toxicon.2019.03.019
    This case report describes the effect of an envenomation by the Beautiful Pit Viper Trimeresurus venustus (or Cryptelytrops venustus), which is a green pit viper native to Thailand and Malaysia. A previously healthy 60-year-old snake breeder with no relevant medical history was bitten by his adult T. venustus in the third finger of his right hand while taking it out of the feeding box. The bite was painful and swelling progressed to include his whole hand within an hour after the bite. He was treated symptomatically with pre-emptive antibiotics and analgesics, never developed any hematological disorders such as coagulopathy and bleeding or disseminated intravascular coagulation and was discharged 26 hours after the bite. The clinical course in our patient matched two other well-documented cases reported to our Poisons Centre, and one further case presented as a conference-poster. All patients recovered with symptomatic therapy and never required antivenom. Therefore, bites by T. venustus seem to present with less severe symptoms compared to other Trimeresurus species.
    Matched MeSH terms: Antivenins
  9. Tan KY, Tan CH, Chanhome L, Tan NH
    PeerJ, 2017;5:e3142.
    PMID: 28392982 DOI: 10.7717/peerj.3142
    BACKGROUND: The monocled cobra (Naja kaouthia) is a medically important venomous snake in Southeast Asia. Its venom has been shown to vary geographically in relation to venom composition and neurotoxic activity, indicating vast diversity of the toxin genes within the species. To investigate the polygenic trait of the venom and its locale-specific variation, we profiled and compared the venom gland transcriptomes of N. kaouthia from Malaysia (NK-M) and Thailand (NK-T) applying next-generation sequencing (NGS) technology.

    METHODS: The transcriptomes were sequenced on the Illumina HiSeq platform, assembled and followed by transcript clustering and annotations for gene expression and function. Pairwise or multiple sequence alignments were conducted on the toxin genes expressed. Substitution rates were studied for the major toxins co-expressed in NK-M and NK-T.

    RESULTS AND DISCUSSION: The toxin transcripts showed high redundancy (41-82% of the total mRNA expression) and comprised 23 gene families expressed in NK-M and NK-T, respectively (22 gene families were co-expressed). Among the venom genes, three-finger toxins (3FTxs) predominated in the expression, with multiple sequences noted. Comparative analysis and selection study revealed that 3FTxs are genetically conserved between the geographical specimens whilst demonstrating distinct differential expression patterns, implying gene up-regulation for selected principal toxins, or alternatively, enhanced transcript degradation or lack of transcription of certain traits. One of the striking features that elucidates the inter-geographical venom variation is the up-regulation of α-neurotoxins (constitutes ∼80.0% of toxin's fragments per kilobase of exon model per million mapped reads (FPKM)), particularly the long-chain α-elapitoxin-Nk2a (48.3%) in NK-T but only 1.7% was noted in NK-M. Instead, short neurotoxin isoforms were up-regulated in NK-M (46.4%). Another distinct transcriptional pattern observed is the exclusively and abundantly expressed cytotoxin CTX-3 in NK-T. The findings suggested correlation with the geographical variation in proteome and toxicity of the venom, and support the call for optimising antivenom production and use in the region. Besides, the current study uncovered full and partial sequences of numerous toxin genes from N. kaouthia which have not been reported hitherto; these include N. kaouthia-specific l-amino acid oxidase (LAAO), snake venom serine protease (SVSP), cystatin, acetylcholinesterase (AChE), hyaluronidase (HYA), waprin, phospholipase B (PLB), aminopeptidase (AP), neprilysin, etc. Taken together, the findings further enrich the snake toxin database and provide deeper insights into the genetic diversity of cobra venom toxins.

    Matched MeSH terms: Antivenins
  10. Tan CH, Liew JL, Tan KY, Tan NH
    Sci Rep, 2016 11 21;6:37299.
    PMID: 27869134 DOI: 10.1038/srep37299
    Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, its effectiveness has not been rigorously evaluated. This study aimed to assess the protein composition and neutralization efficacy of SABU. SDS polyacrylamide gel electrophoresis, size-exclusion liquid chromatography and shotgun proteomics revealed that SABU consists of F(ab')2 but a significant amount of dimers, protein aggregates and contaminant albumins. SABU moderately neutralized Calloselasma rhodostoma venom (potency of 12.7 mg venom neutralized per ml antivenom, or 121.8 mg venom per g antivenom protein) and Bungarus fasciatus venom (0.9 mg/ml; 8.5 mg/g) but it was weak against the venoms of Naja sputatrix (0.3 mg/ml; 2.9 mg/g), Naja sumatrana (0.2 mg/ml; 1.8 mg/g) and Bungarus candidus (0.1 mg/ml; 1.0 mg/g). In comparison, NPAV, the Thai Neuro Polyvalent Antivenom, outperformed SABU with greater potencies against the venoms of N. sputatrix (0.6 mg/ml; 8.3 mg/g), N. sumatrana (0.5 mg/ml; 7.1 mg/g) and B. candidus (1.7 mg/ml; 23.2 mg/g). The inferior efficacy of SABU implies that a large antivenom dose is required clinically for effective treatment. Besides, the antivenom contains numerous impurities e.g., albumins that greatly increase the risk of hypersensitivity. Together, the findings indicate that the production of SABU warrants further improvement.
    Matched MeSH terms: Antivenins
  11. Devaraj T
    PMID: 524151
    Bleeding following bites by the Malayan Pit Viper can either be local or systemic. Bleeding at the site of the bite is due to the local action of the venom as a vasculotoxin. Systemic bleeding occurs with severe poisoning and appears to be mainly dependent on platelet deficiency and the co-existing defibrination syndrome appears to play a minor role in the initiation of bleeding. Thus in the clinical situation non-clotting blood with no overt bleeding can continue up to weeks when specific antivenene is not given. Assessment of the severity of poisoning can easily be made at the bedside. Specific viper antivenene rapidly corrects the spontaneous bleeding and clotting defect of severe systemic poisoning but has no effect on local poisoning.
    Matched MeSH terms: Antivenins
  12. Oukkache N, Ahmad Rusmili MR, Othman I, Ghalim N, Chgoury F, Boussadda L, et al.
    Life Sci, 2015 Mar 1;124:1-7.
    PMID: 25623852 DOI: 10.1016/j.lfs.2014.12.031
    Scorpion venoms contain complex mixtures of molecules, including peptides. These peptides specifically bind to various targets, in particular ion channels. Toxins modulating Na(+), K(+), Ca(2+) and Cl(-) currents were described from venoms. The Androctonus and Buthus geni of scorpions are widely distributed in Morocco. Their stings can cause pain, inflammation, necrosis, muscle paralysis and death. The myotoxicity is predominantly associated with neurotoxic effects and is a cause of mortality and morbidity. In this study, pharmacological effects of venoms were investigated in vitro on neuromuscular transmission.
    Matched MeSH terms: Antivenins/pharmacology*
  13. Kumarapppan C, Jaswanth A, Kumarasunderi K
    Asian Pac J Trop Med, 2011 Sep;4(9):743-7.
    PMID: 21967700 DOI: 10.1016/S1995-7645(11)60185-5
    OBJECTIVE: To validate traditional claims of usefulness of the Indian plants in management of poisonous snakebite and evaluate the antivenom properties displayed by the alcoholic extracts of Andrographis paniculata (A. paniculata), Crateva magna (C. magna), Gloriosa superba (G. superba) and Hydrocotyle javanica (H. javanica).

    METHODS: These plants were collected, identified and the extracts were prepared by using conventional Soxhlet ethanol extraction technique. The venom neutralization activity was accessed in mice (20-25g) and number of mortalities was observed against clinically important snake (Naja nigricollis) venom. Present study also deals with in vitro membrane stabilizing activity of these plants against hyposaline induced human red blood corpuscles (HRBC).

    RESULTS: Extracts of H. javanica and G. superba gave 80 % and 90 % protection to mice treated with minimum lethal dose of venom (LD(99)). These two plants showed significant neutralization effect against the venoms of Naja nigricollis venom. H. javanica and G. superba (25-100 mg/mL) produced significant changes of membrane stabilization of human red blood cells (HRBC) exposed to hyposaline-induced haemolysis.

    CONCLUSIONS: We conclude that probably due to presence of various phytochemicals plays an important role in the anti-venom potential of these Indian medicinal plants against Naja nigricollis venom. The above observations confirmed that A. paniculata, C. magna, G. superba and H. javanica plant extracts possess potent snake venom neutralizing capacity and could potentially be used as an adjuvants for antivenin therapy in case of snakebite envenomation, especially against the local effects of cobra venoms.

    Matched MeSH terms: Antivenins/pharmacology*
  14. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I
    Biochem Pharmacol, 2014 Oct 1;91(3):409-16.
    PMID: 25064255 DOI: 10.1016/j.bcp.2014.07.001
    Presynaptic neurotoxins are one of the major components in Bungarus venom. Unlike other Bungarus species that have been studied, β-bungarotoxin has never been isolated from Bungarus fasciatus venom. It was hypothesized that the absence of β-bungarotoxin in this species was due to divergence during evolution prior to evolution of β-bungarotoxin. In this study, we have isolated a β-bungarotoxin isoform we named P-elapitoxin-Bf1a by using gel filtration, cation-exchange and reverse-phase chromatography from Malaysian B. fasciatus venom. The toxin consists of two heterogeneous subunits, subunit A and subunit B. LCMS/MS data showed that subunit A was homologous to acidic phospholipase A2 subunit A3 from Bungarus candidus and B. multicinctus venoms, whereas subunit B was homologous with subunit B1 from B. fasciatus venom that was previously detected by cDNA cloning. The toxin showed concentration- and time-dependent reduction of indirect-twitches without affecting contractile responses to ACh, CCh or KCl at the end of experiment in the chick biventer preparation. Toxin modification with 4-BPB inhibited the neurotoxic effect suggesting the importance of His-48. Tissue pre-incubation with monovalent B. fasciatus (BFAV) or neuro-polyvalent antivenom (NPV), at the recommended titer, was unable to inhibit the twitch reduction induced by the toxin. This study indicates that Malaysian B. fasciatus venom has a unique β-bungarotoxin isoform which was not neutralized by antivenoms. This suggests that there might be other presynaptic neurotoxins present in the venom and there is a variation in the enzymatic neurotoxin composition in venoms from different localities.
    Matched MeSH terms: Antivenins/pharmacology
  15. Wong KY, Tan KY, Tan NH, Tan CH
    Toxins (Basel), 2021 01 14;13(1).
    PMID: 33466660 DOI: 10.3390/toxins13010060
    The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.
    Matched MeSH terms: Antivenins/therapeutic use*
  16. Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH
    Toxicon, 2014 Mar;79:37-44.
    PMID: 24412778 DOI: 10.1016/j.toxicon.2013.12.011
    The knowledge of venom pharmacokinetics is essential to improve the understanding of envenomation pathophysiology. Using a double-sandwich ELISA, this study investigated the pharmacokinetics of the venom of hump-nosed pit viper (Hypnale hypnale) following intravenous and intramuscular injections into rabbits. The pharmacokinetics of the venom injected intravenously fitted a three-compartment model. There is a rapid (t1/2π = 0.4 h) and a slow (t1/2α = 0.8 h) distribution phase, followed by a long elimination phase (t1/2β = 19.3 h) with a systemic clearance of 6.8 mL h(-1) kg(-1), consistent with the prolonged abnormal hemostasis reported in H. hypnale envenomation. On intramuscular route, multiple peak concentrations observed in the beginning implied a more complex venom absorption and/or distribution pattern. The terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were nevertheless not significantly different (p > 0.05) from that of the venom injected intravenously. The intramuscular bioavailability was exceptionally low (Fi.m. = 4%), accountable for the highly varied median lethal doses between intravenous and intramuscular envenomations in animals. The findings indicate that the intramuscular route of administration does not significantly alter the pharmacokinetics of H. hypnale venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Antivenins/blood
  17. Faisal T, Tan KY, Sim SM, Quraishi N, Tan NH, Tan CH
    J Proteomics, 2018 07 15;183:1-13.
    PMID: 29729992 DOI: 10.1016/j.jprot.2018.05.003
    The venom proteome of wild Pakistani Russell's viper (Daboia russelii) was investigated through nano-ESI-LCMS/MS of the reverse-phase HPLC fractions. A total of 54 venom proteins were identified and clustered into 11 protein families. Phospholipase A2 (PLA2, 63.8%) and Kunitz-type serine protease inhibitor (KSPI, 16.0%) were most abundant, followed by snake venom serine protease (SVSP, 5.5%, mainly Factor V activating enzyme), vascular endothelial growth factor (VEGF, 4.3%), snake venom metalloproteinase (SVMP, 2.5%, mainly Factor X activating enzyme) and phosphodiesterase (PDE, 2.5%). Other minor proteins include cysteine-rich secretory protein (CRiSP), snake venom C-type lectin/lectin-like protein (snaclec), nerve growth factor, L-amino acid oxidase and 5'-nucleotidase. PLA2, KSPI, SVSP, snaclec and SVMP are hemotoxic proteins in the venom. The study indicated substantial venom variation in D. russelii venoms of different locales, including 3 Pakistani specimens kept in the USA. The venom exhibited potent procoagulant activity on human plasma (minimum clotting dose = 14.5 ng/ml) and high lethality (rodent LD50 = 0.19 μg/g) but lacked hemorrhagic effect locally. The Indian VINS Polyvalent Antivenom bound the venom immunologically in a concentration-dependent manner. It moderately neutralized the venom procoagulant and lethal effects (normalized potency against lethality = 2.7 mg venom neutralized per g antivenom).

    BIOLOGICAL SIGNIFICANCE: Comprehensive venom proteomes of D. russelii from different locales will facilitate better understanding of the geographical variability of the venom in both qualitative and quantitative terms. This is essential to provide scientific basis for the interpretation of differences in the clinical presentation of Russell's viper envenomation. The study revealed a unique venom proteome of the Pakistani D. russelii from the wild (Indus Delta), in which PLA2 predominated (~60% of total venom proteins). The finding unveiled remarkable differences in the venom compositions between the wild (present study) and the captive specimens reported previously. The integration of toxicity tests enabled the correlation of the venom proteome with the envenoming pathophysiology, where the venom showed potent lethality mediated through coagulopathic activity. The Indian VINS Polyvalent Antivenom (VPAV) showed binding activity toward the venom protein antigens; however the immunorecognition of small proteins and PLA2-dominating fractions was low to moderate. Consistently, the antivenom neutralized the toxicity of the wild Pakistani Russell's viper venom at moderate efficacies. Our results suggest that it may be possible to enhance the Indian antivenom potency against the Pakistani viper venom by the inclusion of venoms from a wider geographical range including that from Pakistan into the immunogen formulation.

    Matched MeSH terms: Antivenins/chemistry*
  18. Aye MTH, Naing T, Myint KT
    BMJ Case Rep, 2018 Sep 05;2018.
    PMID: 30185451 DOI: 10.1136/bcr-2018-225040
    We report a case of a 70-year-old farmer admitted for viper bite who presented with bilateral hyphema and angle closure attack. He was managed conservatively with topical steroids and cycloplegics. He responded well and was discharged after 2 weeks.
    Matched MeSH terms: Antivenins/therapeutic use
  19. Jamaiah I, Rohela M, Ng TK, Ch'ng KB, Teh YS, Nurulhuda AL, et al.
    PMID: 16771235
    A hospital based retrospective study of the prevalence of snakebite cases at Hospital Kuala Lumpur was carried out over a five-year period from 1999 to 2003. A total of 126 snakebite cases were recorded. The highest admission for snakebites was recorded in 2001 (29 cases). The majority of cases were admitted for three days or less (79%). Most of the snakebite cases were reported in the 11-30 years age group (52%). The male:female ratio was 3:1. The majority of cases were Malaysians (80%, 101 cases). Of the non-Malaysians, Indonesians constituted the most (56%, 14 cases). Bites occurred most commonly on the lower limbs (49%), followed by upper limbs (45%) and on other parts of the body (6%). No fatal cases were detected and complications were scarce. In 60% (70 cases) the snake could not be identified. Of the four species of snakes that were identified, cobra (both suspected and confirmed) constituted the largest group (25%), followed by viper (10%), python (4%) and sea snake (1%). The most common clinical presentations were pain and swelling, 92% (116 cases). All patients were put on snakebite charts and their vital signs were monitored. Of the snakebite cases, 48% (61 cases) were treated with cloxacillin and 25% (32 cases) were given polyvalent snake antivenom.
    Matched MeSH terms: Antivenins/therapeutic use
  20. Jamaiah I, Rohela M, Roshalina R, Undan RC
    PMID: 15916099
    The records of 284 snake bite cases presenting to the Kangar District Hospital, Perlis, west Malaysia, from January 1999 till December 2000 were carefully reviewed. Data on prevalence and types of snake bites, were recorded. The majority of the cases were among Malays (60.2%), followed by Chinese (16.9%), Indians (13%), and others which include Thai nationals, army personnel from Sabah and Sarawak, and foreign tourists (9.8%). A higher incidence was found in males (60.2%) and most cases were seen in the age group of 10-19 years (33%). Snake bites were more common between 2 PM and 9 PM (47.6%) and from 7 AM to 2 PM (33.4%). The snakes were positively identified in 68 cases, of which 50 were common cobras (Naja naja) (73%), 16 were Malayan pit vipers (Agkistrodon rhodostoma) (24%) and two were sea-snakes (3%).
    Matched MeSH terms: Antivenins/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links