Displaying publications 61 - 68 of 68 in total

Abstract:
Sort:
  1. Wu XY, Zhao ZY, Osman EEA, Wang XJ, Choo YM, Benjamin MM, et al.
    Bioorg Chem, 2024 Feb;143:107103.
    PMID: 38211549 DOI: 10.1016/j.bioorg.2024.107103
    Three undescribed (1-3) and nine known (4-12) platanosides were isolated and characterized from a bioactive extract of the May leaves of Platanus × acerifolia that initially showed inhibition against Staphylococcus aureus. Targeted compound mining was guided by an LC-MS/MS-based molecular ion networking (MoIN) strategy combined with conventional isolation procedures from a unique geographic location. The novel structures were mainly determined by 2D NMR and computational (NMR/ECD calculations) methods. Compound 1 is a rare acylated kaempferol rhamnoside possessing a truxinate unit. 6 (Z,E-platanoside) and 7 (E,E-platanoside) were confirmed to have remarkable inhibitory effects against both methicillin-resistant S. aureus (MIC: ≤ 16 μg/mL) and glycopeptide-resistant Enterococcus faecium (MIC: ≤ 1 μg/mL). These platanosides were subjected to docking analyses against FabI (enoyl-ACP reductase) and PBP1/2 (penicillin binding protein), both of which are pivotal enzymes governing bacterial growth but not found in the human host. The results showed that 6 and 7 displayed superior binding affinities towards FabI and PBP2. Moreover, surface plasmon resonance studies on the interaction of 1/7 and FabI revealed that 7 has a higher affinity (KD = 1.72 μM), which further supports the above in vitro data and is thus expected to be a novel anti-antibacterial drug lead.
  2. Zhou PJ, Wu XY, Zhao ZY, Zang Y, Sun ZS, Li YL, et al.
    Phytochemistry, 2025 Jan;229:114309.
    PMID: 39427693 DOI: 10.1016/j.phytochem.2024.114309
    Parrotia subaequalis, an endangered Tertiary relict tree native to China and a member of the Hamamelidaceae family, is one of several host plant species in this family that exhibit unique ecological habits, such as gall formation. Tree galls are the results of complex interactions between gall-inducing insects and their host plant organs. The formation of galls may serve to protect other regions of the plant from potential damage, often through the production of phytoalexins. In this study, a preliminary investigation was carried out on the metabolites of the 90% MeOH extract derived from the closed spherical galls on the twigs of P. subaequalis. Consequently, nine previously undescribed benzofuran-type and dibenzofuran-type phytoalexins (parrotiagallols A-I, 1-9, respectively) were isolated and characterized, along with several known miscellaneous metabolites (10-17). Their chemical structures and absolute configurations were elucidated using spectroscopic methods, a combination of calculated and experimental electronic circular dichroism data, and single crystal X-ray diffraction analyses. Among these compounds, 1 and 2 are identified as neolignan derivatives, while compounds 3-5 are classified as 9,10-dinorneolignans. Compound 6 represents a rare 2,3-seco-neolignan, and compounds 7-9 are dihydroxy-dimethyl-dibenzofuran derivatives. Parrotiagallol A (1) showed considerable antibacterial activity against Staphylococcus aureus, with an MIC value of 14 μM. Additionally, parrotiagallol E (5) and methyl gallate (17) exhibited inhibitory effects against ATP-citrate lyase (ACL), a potential therapeutic target for hyperlipidemia, with IC50 values of 5.1 and 9.8 μM, respectively. The findings underscore that galls not only serve as physical defense barriers but also benefit from the chemical defense system of the host plants. These insights provide avenues for exploring potential new therapeutic agents for S. aureus infections and ACL-related diseases, while also promoting scientific conservation strategies for P. subaequalis.
  3. Hanna GS, Choo YM, Harbit R, Paeth H, Wilde S, Mackle J, et al.
    J Nat Prod, 2021 Nov 26;84(11):3001-3007.
    PMID: 34677966 DOI: 10.1021/acs.jnatprod.1c00625
    The pressing need for SARS-CoV-2 controls has led to a reassessment of strategies to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. This review article addresses how contemporary approaches involving computational chemistry, natural product (NP) and protein databases, and mass spectrometry (MS) derived target-ligand interaction analysis can be utilized to expedite the interrogation of NP structures while minimizing the time and expense of extraction, purification, and screening in BioSafety Laboratories (BSL)3 laboratories. The unparalleled structural diversity and complexity of NPs is an extraordinary resource for the discovery and development of broad-spectrum inhibitors of viral genera, including Betacoronavirus, which contains MERS, SARS, SARS-CoV-2, and the common cold. There are two key technological advances that have created unique opportunities for the identification of NP prototypes with greater efficiency: (1) the application of structural databases for NPs and target proteins and (2) the application of modern MS techniques to assess protein-ligand interactions directly from NP extracts. These approaches, developed over years, now allow for the identification and isolation of unique antiviral ligands without the immediate need for BSL3 facilities. Overall, the goal is to improve the success rate of NP-based screening by focusing resources on source materials with a higher likelihood of success, while simultaneously providing opportunities for the discovery of novel ligands to selectively target proteins involved in viral infection.
  4. Oei JL, Saugstad OD, Lui K, Wright IM, Smyth JP, Craven P, et al.
    Pediatrics, 2017 01;139(1).
    PMID: 28034908 DOI: 10.1542/peds.2016-1452
    BACKGROUND AND OBJECTIVES: Lower concentrations of oxygen (O2) (≤30%) are recommended for preterm resuscitation to avoid oxidative injury and cerebral ischemia. Effects on long-term outcomes are uncertain. We aimed to determine the effects of using room air (RA) or 100% O2 on the combined risk of death and disability at 2 years in infants <32 weeks' gestation.

    METHODS: A randomized, unmasked study designed to determine major disability and death at 2 years in infants <32 weeks' gestation after delivery room resuscitation was initiated with either RA or 100% O2 and which were adjusted to target pulse oximetry of 65% to 95% at 5 minutes and 85% to 95% until NICU admission.

    RESULTS: Of 6291 eligible patients, 292 were recruited and 287 (mean gestation: 28.9 weeks) were included in the analysis (RA: n = 144; 100% O2: n = 143). Recruitment ceased in June 2014, per the recommendations of the Data and Safety Monitoring Committee owing to loss of equipoise for the use of 100% O2. In non-prespecified analyses, infants <28 weeks who received RA resuscitation had higher hospital mortality (RA: 10 of 46 [22%]; than those given 100% O2: 3 of 54 [6%]; risk ratio: 3.9 [95% confidence interval: 1.1-13.4]; P = .01). Respiratory failure was the most common cause of death (n = 13).

    CONCLUSIONS: Using RA to initiate resuscitation was associated with an increased risk of death in infants <28 weeks' gestation. This study was not a prespecified analysis, and it was underpowered to address this post hoc hypothesis reliably. Additional data are needed.

  5. Thamrin V, Saugstad OD, Tarnow-Mordi W, Wang YA, Lui K, Wright IM, et al.
    J Pediatr, 2018 10;201:55-61.e1.
    PMID: 30251639 DOI: 10.1016/j.jpeds.2018.05.053
    OBJECTIVE: To determine rates of death or neurodevelopmental impairment (NDI) at 2 years corrected age (primary outcome) in children <32 weeks' gestation randomized to initial resuscitation with a fraction of inspired oxygen (FiO2) value of 0.21 or 1.0.

    STUDY DESIGN: Blinded assessments were conducted at 2-3 years corrected age with the Bayley Scales of Infant and Toddler Development, Third Edition or the Ages and Stages Questionnaire by intention to treat.

    RESULTS: Of the 290 children enrolled, 40 could not be contacted and 10 failed to attend appointments. Among the 240 children for whom outcomes at age 2 years were available, 1 child had a lethal congenital anomaly, 1 child had consent for follow-up withdrawn, and 23 children died. The primary outcome, which was available in 238 (82%) of those randomized, occurred in 47 of the 117 (40%) children assigned to initial FiO2 0.21 and in 38 of the 121 (31%) assigned to initial FiO2 1.0 (OR, 1.47; 95% CI, 0.86-2.5; P = .16). No difference in NDI was found in 215 survivors randomized to FiO2 0.21 vs 1.0 (OR, 1.26; 95% CI, 0.70-2.28; P = .11). In post hoc exploratory analyses in the whole cohort, children with a 5-minute blood oxygen saturation (SpO2) <80% were more likely to die or to have NDI (OR, 1.85; 95% CI, 1.07-3.2; P = .03).

    CONCLUSIONS: Initial resuscitation of infants <32 weeks' gestation with initial FiO2 0.21 had no significant effect on death or NDI compared with initial FiO2 1.0. Further evaluation of optimum initial FiO2, including SpO2 targeting, in a large randomized controlled trial is needed.

    TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Network Registry ACTRN 12610001059055 and the National Malaysian Research Registry NMRR-07-685-957.

  6. Baba A, Webbe J, Butcher NJ, Rodrigues C, Stallwood E, Goren K, et al.
    Pediatrics, 2023 Sep 01;152(3).
    PMID: 37641881 DOI: 10.1542/peds.2022-060751
    OBJECTIVES: Clear outcome reporting in clinical trials facilitates accurate interpretation and application of findings and improves evidence-informed decision-making. Standardized core outcomes for reporting neonatal trials have been developed, but little is known about how primary outcomes are reported in neonatal trials. Our aim was to identify strengths and weaknesses of primary outcome reporting in recent neonatal trials.

    METHODS: Neonatal trials including ≥100 participants/arm published between 2015 and 2020 with at least 1 primary outcome from a neonatal core outcome set were eligible. Raters recruited from Cochrane Neonatal were trained to evaluate the trials' primary outcome reporting completeness using relevant items from Consolidated Standards of Reporting Trials 2010 and Consolidated Standards of Reporting Trials-Outcomes 2022 pertaining to the reporting of the definition, selection, measurement, analysis, and interpretation of primary trial outcomes. All trial reports were assessed by 3 raters. Assessments and discrepancies between raters were analyzed.

    RESULTS: Outcome-reporting evaluations were completed for 36 included neonatal trials by 39 raters. Levels of outcome reporting completeness were highly variable. All trials fully reported the primary outcome measurement domain, statistical methods used to compare treatment groups, and participant flow. Yet, only 28% of trials fully reported on minimal important difference, 24% on outcome data missingness, 66% on blinding of the outcome assessor, and 42% on handling of outcome multiplicity.

    CONCLUSIONS: Primary outcome reporting in neonatal trials often lacks key information needed for interpretability of results, knowledge synthesis, and evidence-informed decision-making in neonatology. Use of existing outcome-reporting guidelines by trialists, journals, and peer reviewers will enhance transparent reporting of neonatal trials.

  7. Webbe J, Baba A, Butcher NJ, Rodrigues C, Stallwood E, Goren K, et al.
    Pediatrics, 2023 Sep 01;152(3).
    PMID: 37641894 DOI: 10.1542/peds.2022-060765
    BACKGROUND AND OBJECTIVES: There is variability in the selection and reporting of outcomes in neonatal trials with key information frequently omitted. This can impact applicability of trial findings to clinicians, families, and caregivers, and impair evidence synthesis. The Neonatal Core Outcomes Set describes outcomes agreed as clinically important that should be assessed in all neonatal trials, and Consolidated Standards of Reporting Trials (CONSORT)-Outcomes 2022 is a new, harmonized, evidence-based reporting guideline for trial outcomes. We reviewed published trials using CONSORT-Outcomes 2022 guidance to identify exemplars of neonatal core outcome reporting to strengthen description of outcomes in future trial publications.

    METHODS: Neonatal trials including >100 participants per arm published between 2015 to 2020 with a primary outcome included in the Neonatal Core Outcome Set were identified. Primary outcome reporting was reviewed using CONSORT 2010 and CONSORT-Outcomes 2022 guidelines by assessors recruited from Cochrane Neonatal. Examples of clear and complete outcome reporting were identified with verbatim text extracted from trial reports.

    RESULTS: Thirty-six trials were reviewed by 39 assessors. Examples of good reporting for CONSORT 2010 and CONSORT-Outcomes 2022 criteria were identified and subdivided into 3 outcome categories: "survival," "short-term neonatal complications," and "long-term developmental outcomes" depending on the core outcomes to which they relate. These examples are presented to strengthen future research reporting.

    CONCLUSIONS: We have identified examples of good trial outcome reporting. These illustrate how important neonatal outcomes should be reported to meet the CONSORT 2010 and CONSORT-Outcomes 2022 guidelines. Emulating these examples will improve the transmission of information relating to outcomes and reduce associated research waste.

  8. Ooi LC, Low ET, Abdullah MO, Nookiah R, Ting NC, Nagappan J, et al.
    Front Plant Sci, 2016;7:771.
    PMID: 27446094 DOI: 10.3389/fpls.2016.00771
    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links