Displaying publications 681 - 700 of 10432 in total

Abstract:
Sort:
  1. Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC
    Mol Biotechnol, 2023 Nov;65(11):1737-1749.
    PMID: 36971996 DOI: 10.1007/s12033-023-00725-y
    Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
    Matched MeSH terms: Recombinant Proteins/chemistry
  2. Pratika RA, Wijaya K, Utami M, Mulijani S, Patah A, Alarifi S, et al.
    Chemosphere, 2023 Nov;341:139822.
    PMID: 37598950 DOI: 10.1016/j.chemosphere.2023.139822
    The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).
    Matched MeSH terms: Ethanol/chemistry
  3. Yung YL, Lakshmanan S, Chu CM, Kumaresan S, Tham HJ
    PMID: 37549246 DOI: 10.1080/19440049.2023.2235608
    The rising concern about the presence of 3-monochloropropane 1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in food has prompted much research to be conducted. Some process modifications and the use of specific chemicals have been employed to mitigate both 3-MCPDE and GE. Alkalisation using NaOH, KOH, alkali metals or alkaline earth metals and post sparging with steam or ethanol and short path distillation have shown simultaneous mitigation of 51-91% in 3-MCPDE and of 13-99% in GE, both contaminants achieved below 1000 µg/kg. Some of the mitigation methods have resulted in undesirable deterioration in other parameters of the refined oil. When the processed oil is used in food processing, it results in changes to 3-MCPDE and GE. Repeated deep frying above 170 °C in the presence of NaCl and baking at 200 °C with flavouring (dried garlic and onion), resulted in increased 3-MCPDE. Repeated frying in the presence of antioxidants (TBHQ, rosemary and phenolics) decreased 3-MCPDE in processed food. The GE content in foods tends to decline with time, indicating instability of GE's epoxide ring.
    Matched MeSH terms: Plant Oils/chemistry
  4. Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127169.
    PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169
    The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  5. Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, ALOthman ZA, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127112.
    PMID: 37774818 DOI: 10.1016/j.ijbiomac.2023.127112
    Herein, a highly efficient and sustainable adsorbent of cross-linked chitosan-glyoxal/algae biocomposite (CHT-GLX/ALG) adsorbent was developed through an innovative hydrothermal cross-linking method. The CHT-GLX/ALG biocomposite was characterized using several complementary analytical methods that include CHN-O, XRD, FTIR, SEM-EDX, and pHpzc. This new adsorbent, named CHT-GLX/ALG, was utilized for the adsorption of a cationic dye (methyl violet 2B; MV 2B), from synthetic wastewater. The optimization of the dye adsorption process involved key parameters is listed: CHT-GLX/ALG dosage (from 0.02 to 0.1 g/100 mL), pH (from 4 to 10), and contact time (from 20 to 180 min) that was conducted using the Box-Behnken design (BBD). The optimal adsorption conditions for the highest decolorization efficiency of MV 2B (97.02 %) were estimated using the statistical model of the Box-Behnken design. These conditions include a fixed adsorbent dosage of 0.099 g/100 mL, pH 9.9, and a 179.9 min contact time. The empirical data of MV 2B adsorption by CHT-GLX/ALG exhibited favorable agreement with the Freundlich isotherm model. The kinetic adsorption profile of MV 2B by CHT-GLX/ALG revealed a good fit with the pseudo-second-order model. The maximum adsorption capacity (qmax) for MV 2B by CHT-GLX/ALG was estimated at 110.8 mg/g. The adsorption of MV 2B onto the adsorbent can be attributed to several factors, including electrostatic interactions between the negatively charged surface of CHT-GLX/ALG and the MV 2B cation, as well as n-π and H-bonding. These interactions play a crucial role in facilitating the effective adsorption of MV 2B onto the biocomposite adsorbent. Generally, this study highlights the potential of CHT-GLX/ALG as an efficient and sustainable adsorbent for the effective removal of organic dyes.
    Matched MeSH terms: Glyoxal/chemistry
  6. Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(55):116960-116983.
    PMID: 36456674 DOI: 10.1007/s11356-022-24176-1
    The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.
    Matched MeSH terms: Glass/chemistry
  7. Khan MSJ, Sidek LM, Kamal T, Asiri AM, Khan SB, Basri H, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128544.
    PMID: 38061525 DOI: 10.1016/j.ijbiomac.2023.128544
    This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.
    Matched MeSH terms: Coloring Agents/chemistry
  8. Stephen S, Gorain B, Choudhury H, Chatterjee B
    Drug Deliv Transl Res, 2022 Jan;12(1):105-123.
    PMID: 33604837 DOI: 10.1007/s13346-021-00935-4
    The biocompatible nature of mesoporous silica nanoparticles (MSN) attracted researchers' attention to deliver therapeutic agents in the treatment of various diseases, where their porous nature, high drug loading efficiency, and suitability to functionalize with a specific ligand of MSN helped to obtain the desired outcome. The application of MSN has been extended to deliver small chemicals to large-sized peptides or proteins to fight against complex diseases. Recently, formulation researches with MSN have been progressed for various non-conventional drug delivery systems, including liposome, microsphere, oro-dispersible film, 3D-printed formulation, and microneedle. Low bulk density, retaining mesoporous structure during downstream processing, and lack of sufficient in vivo studies are some of the important issues towards the success of mesoporous silica-based advanced drug delivery systems. The present review has aimed to evaluate the application of MSN in advanced drug delivery systems to critically analyze the role of MSN in the respective formulation over other functionalized polymers. Finally, an outlook on the future direction of MSN-based advanced drug delivery systems has been drawn against the existing challenges with this platform.
    Matched MeSH terms: Drug Carriers/chemistry
  9. Shawal NBM, Razali NA, Hairom NHH, Yatim NII, Rasit N, Harun MHC, et al.
    Water Sci Technol, 2023 Dec;88(12):3142-3150.
    PMID: 38154800 DOI: 10.2166/wst.2023.398
    This study aims to recover the used coagulants from two water treatment plants via acidification technique. The water treatment sludge (WTS) was acidified with sulfuric acid (H2SO-4) at variable normalities (0.5, 1, 1.5, 2.0 and 2.5 N). The surface morphology and functionalities of both recovered coagulants were analysed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The performance of recovered coagulants was tested for turbidity removal in surface water treatment at different coagulant dosages and pH. It was found that the optimum normality of H2SO4 for recovered alum was 1.5 N, where 66% turbidity removal was recorded. The recovered PAC treated with 1.0 N H2SO4 indicated high turbidity removal percentage, which was 50.5%. The turbidity removal increased with increasing coagulant dosage. More than 80% turbidity removal was achieved with 40 mg/L dosage of recovered alum and recovered PAC. Maximum removal (85%) was observed with 50 mg/L dosage of recovered alum. For commercial coagulant, the turbidity removal was higher, with a difference of up to 6% in favor of recovered alum. The potential reuse of coagulants can be explored in order to reduce the operating costs and promotes the reduction of WTS disposal.
    Matched MeSH terms: Alum Compounds/chemistry
  10. Taer E, Yanti N, Padang E, Apriwandi A, Zulkarnain Z, Haryanti NH, et al.
    J Sci Food Agric, 2023 Dec;103(15):7411-7423.
    PMID: 37431642 DOI: 10.1002/jsfa.12846
    BACKGROUND: Porous carbon electrode (PCE) is identified as a highly suitable electrode material for commercial application due to its production process, which is characterized by simplicity, cost-effectiveness and environmental friendliness. PCE was synthesized using torch ginger (Etlingera elatior (Jack) R.M. Smith) leaves as the base material. The leaves were treated with different concentrations of ZnCl2 , resulting in a supercapacitor cell electrode with unique honeycomb-like three-dimensional (3D) morphological pore structure. This PCE comprises nanofibers from lignin content and volatile compounds from aromatic biomass waste.

    RESULTS: From the characterization of physical properties, PCE-0.3 had an impressive amorphous porosity, wettability and 3D honeycomb-like structural morphology with a pore framework consisting of micropores and mesopores. According to the structural advantages of 3D hierarchical pores such as interconnected honeycombs, PCE-0.3 as supercapacitor electrode had a high specific capacitance of up to 285.89 F g-1 at 1 A. Furthermore, the supercapacitor exhibited high energy and power density of 21.54 Wh kg-1 and 161.13 W kg-1 , respectively, with a low internal resistance of 0.059 Ω.

    CONCLUSION: The results indicated that 3D porous carbon materials such as interconnected honeycombs derived from the aromatic biomass of torch ginger leaves have significant potential for the development of sustainable energy storage devices. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Carbon/chemistry
  11. Poulose A, Mathew A, Uthaman A, Lal HM, Parameswaranpillai J, Mathiazhagan A, et al.
    Int J Biol Macromol, 2024 Jan;255:128004.
    PMID: 37979737 DOI: 10.1016/j.ijbiomac.2023.128004
    Cellulose nanofibers have been extracted from arecanut palm sheath fibers via mild oxalic acid hydrolysis coupled with steam explosion technique. Cellulose nanofibers with diameter of 20.23 nm were obtained from arecanut palm sheath fibers. A series of robust hydrophobic cellulose nanopapers were fabricated by combining the synergistic effect of surface roughness induced by the successful deposition of zinc oxide (ZnO) nanoflakes and stearic acid modification via a simple and cost-effective method. In this work, agro-waste arecanut palm sheath was employed as a novel source for the extraction of cellulose nanofibers. 2 wt% of ZnO nanoflakes and 1 M concentration of stearic acid were used to fabricate mechanically robust hydrophobic cellulose nanopapers with a water contact angle (WCA) of 134°. During the deposition of zinc oxide nanoflakes on the CNP for inducing surface roughness, a hydrogen bonding interaction is formed between the hydroxyl groups of cellulose nanofibers and the zinc oxide nanoflakes. When this surface roughened CNP was dipped in stearic acid solution. The hydroxyl groups in zinc oxide nanoflakes undergoes esterification reaction with carboxyl groups in stearic acid solution forming an insoluble stearate layer and thus inducing hydrophobicity on CNP. The fabricated hydrophobic cellulose nanopaper displayed a tensile strength of 22.4 MPa and better UV blocking ability which is highly desirable for the sustainable packaging material in the current scenario. Furthermore, the service life of the pristine and modified cellulose nanopapers was predicted using the Arrhenius equation based on the tensile properties obtained during the accelerated ageing studies. The outcome of this study would be broadening the potential applications of hydrophobic and mechanically robust cellulose nanopapers in sustainable packaging applications.
    Matched MeSH terms: Cellulose/chemistry
  12. Soubam T, Gupta A, Jamari SS
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124610-124618.
    PMID: 35610450 DOI: 10.1007/s11356-022-20788-9
    Synthetic adhesives used in the production of plywood are a matter of concern because of the emission of carcinogenic gas formaldehyde, increased environmental pollution, and the depletion of fossil fuels. In this study, a bioadhesive composed of natural rubber latex (NRL) and rice starch was developed. However, rice starch has low moisture resistance, resulting in low adhesion. Thus, to enhance the effectiveness of NRL-blended rice starch-based bioadhesive, rice starch was cross-linked with polymeric 4,4″-diphenylmethane diisocyanate (pMDI) resin, which is an environment-friendly, formaldehyde free, and moisture resistant that is highly compatible with starch. The chemical interaction, viscosity, solid content, and gel time of the developed NRL-isocyanate cross-linked rice starch-based bioadhesive was investigated. The efficacy of the formulated bioadhesive was demonstrated by the fabrication of plywood. The presence of isocyanate and urethane capabilities in the bioadhesive formulations was confirmed by Fourier transform infrared spectroscopy (FTIR). The bioadhesive type Iso-A was discovered to have the highest viscosity of 8270 mPa.s, whereas Iso-B has the shortest gel time of 3.46 min and the highest solid content of 44%; the higher solid content accelerates the gel time. In terms of physical and mechanical properties of plywood, Iso-B has the lowest thickness swelling (TS) value of 13%, lowest water absorption (WA) value of 52% and shear strength value of 1.92 MPa, which corresponds to the ISO 12466-2-2007 standard requirements. Based on the results, NRL-blended isocyanate starch-based bioadhesive could be a good potential raw material for eco-friendly plywood industries with adequate accuracy.
    Matched MeSH terms: Adhesives/chemistry
  13. Abd Rahman NH, Rahman RA, Rahmat Z, Jaafar NR, Puspaningsih NNT, Illias RM
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128260.
    PMID: 38000618 DOI: 10.1016/j.ijbiomac.2023.128260
    Pectinases are outstanding multienzymes, which have the potential to produce new emerging pectic-oligosaccharides (POS) via enzymatic hydrolysis of pectin. However, free pectinase is unable to undergo repeated reaction for the production of POS. This study proposed a sustainable biocatalyst of pectinases known as cross-linked pectinase aggregates (CLPA). Pectinase from Aspergillus aculeatus was successfully precipitated using 2 mg/mL pectinase and 60 % acetone for 20 min at 20 °C, which remained 36.3 % of its initial activity. The prepared CLPA showed the highest activity recovery (85.0 %), under the optimised conditions (0.3 % (v/v) starch and glutaraldehyde mixture (St/Ga), 1.5: 1 of St/Ga, 25 °C, 1.5 h). Furthermore, pectin-degrading enzymes from various sources were used to produce different CLPA. The alteration of pectinase secondary structure gave high stability in acidic condition (pH 4), thermostability, deactivation energy and half-life, and improved storage stability at 4 °C for 30 days. Similarly to their free counterpart, the CLPA exhibited comparable enzymatic reaction kinetics and could be reused eight times with approximately 20 % of its initial activity. The developed CLPA does not only efficaciously produced POS from pectin as their free form, but also exhibited better operational stability and reusability, making it more suitable for POS production.
    Matched MeSH terms: Oligosaccharides/chemistry
  14. Chang JY, Syauqi TA, Sudesh K, Ng SL
    Bioresour Technol, 2024 Feb;393:130054.
    PMID: 37995876 DOI: 10.1016/j.biortech.2023.130054
    Polyhydroxyalkanoates (PHAs) are promising alternatives to non-degradable polymers in various applications. This study explored the use of biologically recovered PHA as a biofilm carrier in a moving bed biofilm reactor for acid orange 7 treatment. The PHA was comprised of 86 ± 1 mol% of 3-hydroxybutyrate and 14 ± 1 mol% of 3-hydroxyhexanoate and was melt-fused at 140 °C into pellets. The net positive surface charge of the PHA biocarrier facilitated attachment of negatively charged activated sludge, promoting biofilm formation. A 236-µm mature biofilm developed after 26 days. The high polysaccharides-to-protein ratio (>1) in the biofilm's extracellular polymeric substances indicated a stable biofilm structure. Four main microbial strains in the biofilm were identified as Leclercia adecarboxylata, Leuconostoc citreum, Bacillus cereus, and Rhodotorula mucilaginosa, all of which exhibited decolourization abilities. In conclusion, PHA holds promise as an effective biocarrier for biofilm development, offering a sustainable alternative in wastewater treatment applications.
    Matched MeSH terms: Sewage/chemistry
  15. Yang Y, Liang Q, Zhang B, Zhang J, Fan L, Kang J, et al.
    J Chromatogr A, 2024 Jan 25;1715:464621.
    PMID: 38198876 DOI: 10.1016/j.chroma.2023.464621
    White tea contains the highest flavonoids compared to other teas. While there have been numerous studies on the components of different tea varieties, research explicitly focusing on the flavonoid content of white tea remains scarce, making the need for a good flavonoid purification process for white tea even more important. This study compared the adsorption and desorption performance of five types of macroporous resins: D101, HP20, HPD500, DM301, and AB-8. Among the tested resins, AB-8 was selected based on its best adsorption and desorption performance to investigate the static adsorption kinetics and dynamic adsorption-desorption purification of white tea flavonoids. The optimal purification process was determined: adsorption temperature 25 °C, crude tea flavonoid extract pH 3, ethanol concentration 80 %, sample loading flow rate and eluent flow rate 1.5 BV/min, and eluent dosage 40 BV. The results indicated that the adsorption process followed pseudo-second-order kinetics. Under the above purification conditions, the purity of the total flavonoids in the purified white tea flavonoid increased from approximately 17.69 to 46.23 %, achieving a 2.61-fold improvement, indicating good purification results. The purified white tea flavonoid can be further used for nutraceutical and pharmaceutical applications.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Lee ST, Beaumont D, Su XD, Muthoosamy K, New SY
    Anal Chim Acta, 2018 Jun 20;1010:62-68.
    PMID: 29447672 DOI: 10.1016/j.aca.2018.01.012
    Single strand DNA (ssDNA) chimeras consisting of a silver nanoclusters-nucleating sequence (NC) and an aptamer are widely employed to synthesize functional silver nanoclusters (AgNCs) for sensing purpose. Despite its simplicity, this chimeric-templated AgNCs often leads to undesirable turn-off effect, which may suffer from false positive signals caused by interference. In our effort to elucidate how the relative position of NC and aptamer affects the fluorescence behavior and sensing performance, we systematically formulated these NC and aptamer regions at different position in a DNA chimera. Using adenosine aptamer as a model, we tested the adenosine-induced optical response of each design. We also investigated the effect of linker region connecting NC and aptamer, as well as different NC sequence on the sensing performance. We concluded that locating NC sequence at 5'-end exhibited the best response, with immediate fluorescence enhancement observed over a wide linear range (1-2500 μM). Our experimental findings help to explain the emission behavior and sensing performance of chimeric conjugates of AgNCs, providing an important means to formulate a better aptasensor.
    Matched MeSH terms: Aptamers, Nucleotide/chemistry
  17. Garg J, Chiu MN, Krishnan S, Kumar R, Rifah M, Ahlawat P, et al.
    Appl Biochem Biotechnol, 2024 Feb;196(2):1008-1043.
    PMID: 37314636 DOI: 10.1007/s12010-023-04570-2
    Over the last few decades, the application of nanoparticles (NPs) gained immense attention towards environmental and biomedical applications. NPs are ultra-small particles having size ranges from 1 to 100 nm. NPs loaded with therapeutic or imaging compounds have proved a versatile approach towards healthcare improvements. Among various inorganic NPs, zinc ferrite (ZnFe2O4) NPs are considered as non-toxic and having an improved drug delivery characteristics . Several studies have reported broader applications of ZnFe2O4 NPs for treating carcinoma and various infectious diseases. Additionally, these NPs are beneficial for reducing organic and inorganic environmental pollutants. This review discusses about various methods to fabricate ZnFe2O4 NPs and their physicochemical properties. Further, their biomedical and environmental applications have also been explored comprehensively.
    Matched MeSH terms: Ferric Compounds/chemistry
  18. Dong CD, Huang CP, Chen CW, Lam SS, Sonne C, Kang CK, et al.
    Environ Pollut, 2024 Feb 15;343:123173.
    PMID: 38110049 DOI: 10.1016/j.envpol.2023.123173
    Polycyclic aromatic hydrocarbons (PAHs) are critical environmental concerns due to their intrinsic toxic aromatic nature and concomitant circumstances that potentially harm the ecological and human health. In this study, converting mahogany (Swietenia macrophylla King) pericarps to value-added biochar by pyrolysis for evaluating the potential formation/destruction of biochar-bound PAHs was studied for the first time. This study designed and optimized the thermal processing conditions at 300-900 °C in the CO2 or N2 atmosphere, and heteroatoms (N, O, B, NB, and NS) were modified for mahogany pericarps biochar (MPBC) production. The MPBC500 exhibited significantly higher pyrolysis products of PAHs (2780 ± 38 ng g-1) than that of MPBC900 (78 ± 6 ng g-1) under N2 without introducing modified elements. Specifically, the inhibition capacity of MPBC500 for PAHs under CO2 was improved most efficiently by the active nitrogen species of the pyridinic N and pyrrolic N groups. The pyrolysis conditions and heteroatom modification of MPBC altered its physicochemical properties, that is, aromaticity and hydrophobicity, affecting the PAH concentration and composition in the pyrolysis products. This study reveals sustainable approaches to reduce the environmental footprint of biochar by focusing on increases in PAHs pollution in sustainable biochar produced from a low-carbon bioeconomy perspective.
    Matched MeSH terms: Charcoal/chemistry
  19. Lim CSS, Chan EWC, Wong CW
    Int J Biol Macromol, 2024 Feb;259(Pt 2):129303.
    PMID: 38216018 DOI: 10.1016/j.ijbiomac.2024.129303
    Cellulose nanocrystals (CNC) conventionally involve highly concentrated sulphuric acid, which typically resulted in the formation of undesirable by-products. Although less corrosive mineral acids have been explored as alternatives, high concentrations are still required. In this study, CNC was successfully isolated from Leucaena leucocephala wood using mild sulphuric acid with acetic acid as protic solvent, and it was further studied with the addition of Lewis acids in the form of multivalent transition metal salts as co-catalyst. Selected divalent and trivalent transition metal salts including (Cr(NO3)3, Fe(NO3)3, Co(NO3)2, and Ni(NO3)2) were investigated. The morphology, chemical structure, particle size, and physicochemical properties of the CNCs were determined. Controlled depolymerization of cellulose was observed using transmission electron microscopy (TEM). Rod-like morphology for all CNCs was obtained during the hydrolysis process with the smallest CNC particles found at an average length of 278.1 ± 35.1 nm and a diameter of 13.4 ± 3.0 nm. The results showed that higher valence state metal ions resulted in better cellulose hydrolysis efficiency. In addition, the use of transition metal salt as a co-catalyst improved production efficiency and minimised carbonization of CNC while maintaining desired crystallinity and thermal properties.
    Matched MeSH terms: Sulfuric Acids/chemistry
  20. Nawawi WMFBW, Jones M, Murphy RJ, Lee KY, Kontturi E, Bismarck A
    Biomacromolecules, 2020 Jan 13;21(1):30-55.
    PMID: 31592650 DOI: 10.1021/acs.biomac.9b01141
    Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
    Matched MeSH terms: Cellulose/chemistry; Chitin/chemistry*; Crustacea/chemistry; Fungi/chemistry*; Polymers/chemistry; Nanostructures/chemistry*; Animal Shells/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links